Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Press Release / Simulating the Effect of Climate Change on Agriculture

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Press Release / Simulating the Effect of Climate Change on Agriculture

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Press Release

Simulating the Effect of Climate Change on Agriculture

By Edinburgh Sensors

| Read Bio

Published: November 22nd, 2017

Share this article

Increased atmospheric CO2 levels and climate change are believed to contribute to extreme weather conditions, which is a major concern for many. And beyond extreme events, global warming is also predicted to affect agriculture.1,2

While climate change is expected to affect agriculture and reduce crop yields, the complete effects of climate change on agriculture and the resultant human food supplies are yet to be fully understood.2,3,4

Simulating a Changing Climate

In order to understand how changes in CO2, temperature and water availability caused by climate change have an impact on crop growth and food availability, Researchers often use controlled growth chambers to grow plants in conditions that mimic the predicted atmospheric conditions at the end of the century. These controlled growth chambers enable precise control of temperature, CO2 levels, humidity, water availability, light quality and soil quality, allowing Scientists to study how plant growth changes in response to elevated temperatures, elevated CO2 levels and altered water availability.

However, plant growth / behaviour in the field considerably varies from in growth chambers. Owing to differences in light intensity, light quality, evaporative demand, temperature fluctuations and other abiotic and biotic stress factors, the growth of plants in tiny, controlled growth chambers does not always sufficiently reflect plant growth in the field. Moreover, the less realistic the experimental conditions used during simulation experiments of climate change, the less likely the resultant predictions will reflect reality.4

Several attempts have been made over the past 30 years to more closely stimulate climate change growing scenarios including free air CO2 enrichment, open top chambers, free air temperature increases and temperature gradient tunnels, although all these methods are known to have major disadvantages. For instance, chamber-less CO2 exposure systems do not enable stringent control of gas concentrations, while other systems suffer from “chamber effects” such as changes in humidity, wind velocity, temperature, soil quality and light quality.4,5

Spanish Researchers have recently reported temperature gradient greenhouses and growth chamber greenhouses, which are specifically designed to remove some of the disadvantages of simulating the effects of climate change on crop growth in growth chambers. An article reporting their methodology was featured in Plant Science in 2014, describing how the Researchers used temperature gradient greenhouses and growth chamber greenhouses to simulate climate change conditions and study plant responses.4

Choosing the Right Growth Chamber

Compared to traditional growth chambers, temperature gradient greenhouses and controlled growth chambers offer increased working area, allowing them to work as greenhouses without the necessity for isolation panels while still allowing precise control of various environmental factors such as temperature, CO2 concentration and water availability.

Researchers have used these greenhouses to investigate the potential effects of climate change on the growth of grapevine, alfalfa and lettuce.

CO2 Sensors for Climate Change Research

Researchers investigating the effects of climate change on plant growth using greenhouses or growth chambers will require highly accurate CO2 measurements.

The Spanish Researchers used Edinburgh Sensors Guardian sensor in their greenhouses to provide accurate and reliable CO2measurements. As a customer-focused provider of high-quality gas sensing solutions, Edinburgh Sensors has been delivering gas sensors to the research community since the 1980s.4,6

The Guardian NG from Edinburgh Sensors

The Edinburgh Sensors Guardian NG provides precise CO2 measurements in research greenhouses simulating climate change scenarios. The sensor provides near-analyser quality continuous measurement of CO2 concentrations, operates in temperatures of 0-45 °C and relative humidity of 0-95%, and has a CO2 detection range of 0 to 3000 ppm. These features make Guardian NG suitable for use in greenhouses with conditions meant to simulate climate change scenarios.

In addition, the Guardian NG can be easily installed as a stand-alone product in greenhouses to measure CO2, or in tandem with CO2 controllers as done by the Spanish Researchers in their temperature gradient and growth control greenhouses.4,6

Conclusions

In order to understand the potential effects of climate change on plant growth and crop yields, it is important to simulate climate change scenarios in elevated CO2 concentrations. For such studies, accurate CO2 concentration measurements are very important.

The Guardian NG from Edinburgh Sensors is the ideal option for Researchers constructing research greenhouses for climate change simulation.

Share this article

ABOUT THE AUTHOR

Edinburgh Sensors

Founded in 1971, Edinburgh Sensors has become one of the world’s leading manufacturers of cutting-edge gas detection solutions.

The application of our continued research and development has contributed to several major advances in the world of infrared gas sensing and delivered a comprehensive portfolio of products for the detection of CO, CO2, CH4 and many other gases.

Our diverse range of robust OEM Gas Sensors and Gas Monitors enable fast, reliable and continuous gas detection. With a global reputation for high performance, our products are an ideal solution for those applications where accuracy, safety and reliability are paramount.

Connect with Edinburgh Sensors

Visit Website

POPULAR POSTS BY Edinburgh Sensors

Press Release

Reducing the Effects of Methane from Cows in Cattle Farming with Methane Monitors

Press Release

Air Sampling Techniques

Press Release

Studying the Effect of Global Warming on Tropical Crops

Press Release

Simulating the Effect of Climate Change on Agriculture

Press Release

Using Anaerobic Biomass Digestion to Produce Hydrogen and Biofuel

Press Release

Simulating Agricultural Climate Change Scenarios

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
38m

What can you expect from our gas detection summit?

This briefing will allow you to connect and engage with industry experts from the comfort of your home or office.

Register now: https://us06web.zoom.us/webinar/register/4116794789968/WN_m7lbVevnQRiAHDK6KkxX-g

#aweinternational #GasDetectionSummit #summit #gasdetection #gassafety

Reply on Twitter 1641018210278318081 Retweet on Twitter 1641018210278318081 Like on Twitter 1641018210278318081 Twitter 1641018210278318081

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT