Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Press Release / Rapid Detection of Risks to Microbial Safety of Water Using BACTcontrol

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Press Release / Rapid Detection of Risks to Microbial Safety of Water Using BACTcontrol

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Press Release

Rapid Detection of Risks to Microbial Safety of Water Using BACTcontrol

By AQUALABO

| Read Bio

Published: May 12th, 2020

Share this article

Summary
Many microbial diseases can be transmitted via faecally polluted waters. Unfortunately, this also is the case for SARS-CoV-2, the virus causing the current pandemic of COVID-19. BACTcontrol has been proven to be a valuable online tool, testing water with a high frequency for enzymatic activity indicating faecal pollution. BACTcontrol from microLAN / Aqualabo can be used as an early-warning-system for these high-risk situations, triggering protective responses, including immediate testing for the presence of this coronavirus using qPCR methods, .

Water should be safe, for drinking, washing and cleaning (tap water) and for irrigation, swimming or other purposes (surface water and groundwater). It is essential to rapidly detect faecal pollution, a strong indication of the possible presence of microbial pathogens (viruses, bacteria, protozoan parasites).

Currently, the world’s main concern is stopping the COVID-19 pandemic, so this leaflet is emphasizing the value of BACTcontrol in this joint effort. However, our long-term objective is to limit all diseases transmitted via faecally contaminated water.

Figure 2: Picture of the BACTcontrol system.

BACTcontrol has been proven a reliable tool for rapid detection of (faecal) microbial pollution

Throughout the world, online BACTcontrol monitors from microLAN / Aqualabo since 2014 have shown their value in the protection of drinking-water and surface water by companies and institutions.  BACTcontrol operates by sampling water continuously, online (Figure 1 and 2) , and by frequently measuring the activity of the enzymes of E. coli (Figure 3), a bacterium present in the intestines of humans and warm-blooded animals, which has been proven to be a very good indicator of recent faecal contamination of water and food. Enzymatic activity of other indicators can be measured as well: of total coliforms, of enterococci or the total microbial activity.

Figure 1: Schematic overview of the BACTcontrol system.
Figure 3: Schematic overview of the enzymatic reaction

Track record of protection of water by BACTcontrol – some examples

Examples of the application of BACTcontrol in protecting water against viruses and other pathogens: Prague, the capital of the Czech Republic, in May 2015 suffered from a norovirus contamination. This was caused by an aged and leaking sewer pipe line which was above a water distribution line.

The BACTcontrol was used to rapidly detect the source of the contamination in the distribution network. It is now being applied in the same system as a first-line QC control for incoming samples on the laboratory.

Kallehaverenden, Denmark, in 2016 children were falling ill after being exposed to water from a pool on the beach. The BACTcontrol was used to monitor the E. coli levels in the adjacent river (Figure 4). Samples were collected when levels peaked to identify and trace the source of the contamination using qPCR. The same tiered approach is applicable to monitor faecal levels in surface waters at risk of containing the new coronavirus.

Figure 4: Recurring peaks (in the red zone) of E. coli (EC) enzyme activity levels by the BACTcontrol are reliably indicative of faecal contaminations (expressed as E. coli cell equivalents) . A qPCR device was subsequently used to identify pathogens present in the samples collected as a response to the early detection of these peaks.


Early warning of the risk of contracting COVID-19 via water currentlyis highly essential; when the virus is in the water you use, social distancing is not enough. During the current COVID-19 pandemic, screening has shown presence of the causative SARS-CoV-2 virus in stool samples, sewage and wastewater within large communal wastewater treatment plants throughout the world. See outline 1 in the appendix for more information.

The effluent of wastewater treatment plants has always been commonly regarded as a possible threat to the microbial safety of surface waters serving as sources for drinking-water production and recreational purposes. The qualitative detection (absence/presence with qPCR) of SARS-CoV-2 in sewage wastewater has recently been introduced as a complementary tool for detecting and mapping the circulation of this coronavirus in human populations. Surface waters at risk can be monitored with this method. CSO (combined sewer overflows) events significantly increase the concentration of culturable viruses, like adenoviruses, and noroviruses in receiving waters. Absence of SARS-CoV-2 today is not warranting the absence of the virus tomorrow, however.

Inline, high frequency monitoring of SARS-CoV-2 is not feasible, but fortunately it is for detecting the start or an increase of faecal pollution in surface waters and drinking-water, using the BACTcontrol. Thus, the BACTcontrol provides the first step in the tiered approach for cost-effective screening for the risk of SARS-Cov-2 in water.

Research project testing the tiered approach

Currently, a research project is started in The Netherlands to test the effectiveness of BACTcontrol in the tiered approach of rapidly detecting SARS-CoV-2 in waters as described above. See outline 2 in the appendix for more information.

Conclusion

The tiered approach offers the advantage of detecting changes of levels of the faecal indicator E. coli within 1.5 – 2 hours using BACTcontrol, followed by identification of (viral) pathogens using a mobile qPCR-system. The toolkit combines an online low-cost detection method applied at a high frequency (continuous sampling) with a high-cost identification method applied at exactly the riskiest moment: when it matters.

Appendices on next pages expand on the following outlines:

  • Outline 1.: The causative agent of COVID-19, SARS-CoV-2, is detected in stool samples, sewage and wastewater.
  • Outline 2.: Research project for validation of the applicability of the online BACTcontrol combined with the mobile qPCR station as a tiered early-warning-system for the presence of (viral) pathogens due to faecal contaminations.

Sources

Appels, J., Baquero, D., Galofré, B., Ganzer, M., van den Dries, J., Juárez, R., Puigdomènech, C. and van Lieverloo, J.H.M. (2018) Safety and quality control in drinking water systems by online monitoring of enzymatic activity of faecal indicators and total bacteria. In: Skovhus, T.L. and Højris, B. (eds.) Microbiological Sensors for the Drinking Water Industry. IWA Publishing, London, UK, 300 p.

Rodríguez, R.A., Gundy, P.M., Rijal, G.K. et al. The Impact of Combined Sewage Overflows on the

      Viral Contamination of Receiving Waters. Food Environ Virol 4, 34–40 (2012).

Outline 1: The causative agent of COVID-19, SARS-CoV-2, is detected in stool samples, sewage and wastewater

The virus that causes COVID-19, SARS-CoV-2, has been detected in the faeces of some patients diagnosed with the viral disease. According to the United States Centres of Disease Control and Prevention (US CDC): “SARS, a similar coronavirus, has been detected in untreated sewage for up to 14 days. In the 2003 SARS outbreak, there was documented transmission associated with sewage aerosols”.

Sewage surveillance for SARS-Cov-2 is now being performed throughout the world, for example:

  • In France: “Time course quantitative detection of SARS-CoV-2 in Parisian wastewaters correlates with COVID-19 confirmed cases”: by Eau de Paris.
  • The Netherlands: “How sewage could reveal true scale of coronavirus outbreak. Wastewater testing could also be used as an early-warning sign if the virus returns”: by KWR Water Cycle Research Institute.
  • USA: “Track severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in wastewater, with the goal of developing a tool to predict future outbreaks”: by CDM Smith.
  • India: “Coronavirus can spread through sewage systems, says CPCB in its latest guideline”
  • Australia: “This is a major development that enables surveillance of the spread of the virus through Australian communities”: by CSIRO.

Additionally, SARS-CoV-2 has been shown to be transferable to terrestrial animals (cat, dog, tiger, lions, ferrets), increasing the risk of faecal pollution of surface waters by overland rainwater run-off in wildlife areas. Monitoring of surface waters used as drinking-water sources, fishing or recreational purposes.

Figure 5: health officials in Hong Kong evacuated residents from an apartment block over the fear of the coronavirus which may have been transmitted via the building’s pipes. Two residents living on different floors of the building had been infected, health officials said. Three more cases have since been linked to the same building. This has happened before: During the 2003 severe acute respiratory syndrome (SARS) outbreak, pipes became a major source of transmission. At one housing estate, there were more than 300 infections and 42 deaths after defective plumbing allowed the virus to spread through the building (Source: CNN).

Outline 2: Research project for validation of the applicability of the online BACTcontrol combined with the mobile qPCR station as a tiered early-warning-system for the presence of (viral) pathogens due to faecal contaminations

Fast, onsite measurement methods for assessing the actual microbiological water quality can provide essential information for an up-to-date insight into health risks. In the past, the basis has been laid for 2 separate methods that could provide this insight: the online BACT control and mobile qPCR for fast, on-site monitoring of faecal indicators and viruses.

The aim of the project is to validate the online BACTcontrol and mobile qPCR, to link the measurement results of the sensors to the guidelines for water quality (such as the WHO and WFD European guidelines) and to investigate whether these techniques can be applied to surface water as an Early Warning system for fecal contamination and viruses.


Figure 6.: Overview of 12 facts about the COVID-19 virus in water. The illustration details the importance of water access and hygiene during this global pandemic, and what behavioural changes people in rural communities can make to best prevent the spread of the COVID-19 when using water (Prof. dr. Gertjan Medema from the TU Delft, the Netherlands).

The ultimate social goal of this pilot is safe microbiological water status in urban and rural areas through improved quality monitoring. This information is very valuable in supporting government decisions and in providing up-to-date public safety information / warnings. The results of this research will make a significant contribution to equipping the government bodies involved in the analysis of water quality with a toolkit to support cities and water managers in monitoring water quality.

With this project, the technology suppliers will have results from a case study and validation data to demonstrate that the new technology is at least as good as the conventional methods. A fast, onsite method for assessing current microbiological water quality provides essential information for alerting to a current health risk

The intended ultimate social impact is safe water quality in urban and rural areas through improved quality monitoring. Due to the fact that rapid quality changes may occur, the availability of technology with which measurements can be carried out quickly and frequently is important for the cities and water managers. This information is very valuable in supporting event and security decisions and in providing up-to-date water safety information / warnings. They can also gain fast and detailed insight into pollution sources as a basis for efficient water quality management which is the basis for structural measures to improve water quality.

For more information, please visit www.aqualabo.fr

Share this article

ABOUT THE AUTHOR

AQUALABO

AQUALABO designs, manufactures and markets a wide range of water analysis and testing devices and instruments.

Connect with AQUALABO

Visit Website

POPULAR POSTS BY AQUALABO

Press Release

Rapid Detection of Risks to Microbial Safety of Water Using BACTcontrol

Press Release

On-line UV-Vis Alert Analyser for on-line water chemical quality monitoring of BOD / COD / TOC / TSS and Nitrates

Press Release

Autonomous Wireless Real-Time Communication Solution

Press Release

AQUALABO will participate at POLLUTEC 2018

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
19h

At Lovibond® we have understood the importance of water for a long time, and since World Water Day and its motto “The Value of Water” it has become clear: we are living in the middle of a global water crisis.
https://lnkd.in/eB8FAFdc

#aweinternational #lovibond #tintometer #water

Reply on Twitter 1622543763917750273 Retweet on Twitter 1622543763917750273 Like on Twitter 1622543763917750273 Twitter 1622543763917750273

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT