Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Press Release / New Method for Identifying Carbon Compounds

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Press Release / New Method for Identifying Carbon Compounds

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Press Release

New Method for Identifying Carbon Compounds

By NIST: National Institute of Standards and Technology

| Read Bio

Published: September 18th, 2017

Share this article

Scientists at the National Institute of Standards and Technology (NIST) have developed a laboratory instrument that can measure how much of the carbon in many carbon-containing materials was derived from fossil fuels. This will open the way for new methods in the biofuels and bioplastics industries, in scientific research, and environmental monitoring.

Among other things, it will allow scientists to measure how much of the carbon dioxide (CO2) in the atmosphere came from burning fossil fuels, and to estimate fossil fuel emissions in an area as small as a city or as large as a continent.

This is possible because carbon atoms occur in heavy and light forms, or isotopes, and measuring the relative amounts of each can reveal the source of the carbon. Using carbon isotopes in this way is not a new idea, but it requires extremely precise—and expensive—measurements. The new instrument, developed by NIST chemists Adam Fleisher and David Long and based on a technology called cavity ringdown spectroscopy (CRDS), promises to dramatically reduce the cost of those measurements. They described the instrument’s performance in The Journal of Physical Chemistry Letters (link is external).

“Measuring carbon isotopes is an extremely useful technique, but until now, it has found limited use because of the cost,” said Long. “Lowering the cost will open the way for new applications, especially ones that require testing a large number of samples.”

The key to these measurements is carbon-14, a radioactive (yet harmless) isotope of carbon that is formed in the upper atmosphere. That carbon-14 finds its way into all living things. Unlike regular carbon, carbon-14 is unstable, with a half-life of 5,730 years. When living things die, they stop incorporating carbon into their bodies, and their carbon-14 starts to decay away.

Scientists can calculate how long ago something died by measuring how much carbon-14 is in its remains. That technique is called carbon dating, and scientists use it to date things like Neanderthal bones and ancient plant fibers.

Fossil fuels also are the remains of living things, mainly plants that died hundreds of millions of years ago. Virtually all their carbon-14 decayed away eons ago, so anything derived from them is marked by the absence of measurable amounts of carbon-14.

But carbon-14 is extremely rare, and to use it for identifying fossil fuels, scientists need to be able to measure it at concentrations as low as 1 part in 10 trillion. That’s the equivalent of a single grain of sand in 60 dump trucks full of the stuff.

To measure concentrations that low, you need an extremely sensitive measurement technique, and such a technique already exists. Archaeologists have been relying on it for decades. But that technique requires a particle accelerator to separate the isotopes (the heavier carbon-14 accelerates more slowly than everyday carbon-12), along with a facility to house it and a team of PhDs to run it.

The CRDS instrument that Fleisher and Long have developed can sit on a laboratory benchtop and is relatively inexpensive to operate.

CRDS instruments analyze gases by detecting the wavelengths of light they absorb. For instance, CO2 that contains carbon-14—so-called heavy CO2—absorbs a slightly different wavelength than regular CO2.

To measure how much heavy CO2 you have in a CO2 sample, you first inject the sample into the instrument’s measurement cavity (the “C” in CRDS), which is a tube with mirrors inside at either end. You then tune a laser to the exact wavelength that only heavy CO2 absorbs and shoot a burst of it into the cavity. As the laser light bounces between the mirrors, some of its energy is absorbed by the gas. The greater the absorption, the greater the concentration of heavy CO2.

To achieve the required sensitivity, Fleisher and Long enhanced existing CRDS technology by engineering a system that chills the cavity to a uniform minus 55 degrees Celsius and minimizes temperature fluctuations that would throw off the measurement. Making the cavity very cold allows their instrument to detect very faint signals of light absorption, the same way that you might be able to hear a pin drop if you made a room extremely quiet.

This and other improvements boosted the instrument’s sensitivity enough for accurate carbon dating.

To test biofuels and bioplastics, you would first burn those materials, then collect the resulting CO2 for analysis. This would allow you to test a fuel mixture to determine what fraction of it is biofuel. In the airline industry, for example, this would be useful because some countries require that aviation fuels include a specific biofuel percentage. Such tests could also be used to verify that bioplastics, which sell for a premium, do not contain petroleum-derived compounds.

To estimate fossil fuel emissions in a geographic area, you would collect many air samples across that area and analyze the atmospheric CO2 in those samples. Areas with high fossil fuel emissions, such as cities and industrial zones, will have below-normal concentrations of heavy CO2.

“Fossil fuel emissions dilute the concentration of heavy CO2 in the air,” said Fleisher. “If we can accurately measure that concentration after it’s been diluted, we can calculate how much fossil fuel emissions are in the mix.”

A report from the National Academy of Sciences estimated that 10,000 samples a year, collected at carefully chosen locations around the United States, would be enough to estimate national fossil fuel emissions to within 10 percent of the actual value. Such a system of measurements can increase the reliability of national emissions estimates. This would be especially useful in parts of the world where high-quality emissions data are not readily available.

“There is a need for this type of measurement in many industries,” Fleisher said. “We’ve demonstrated a path to meeting that need in a cost-effective way.”

Pictures courtesy of NIST.

Share this article

ABOUT THE AUTHOR

NIST: National Institute of Standards and Technology

NIST is an organization with strong values, reflected both in our history and our current work. NIST leadership and staff will uphold these values to ensure a high performing environment that is safe and respectful of all. Perseverance: We take the long view, planning the future with scientific knowledge and imagination to ensure continued impact and relevance for our stakeholders. Integrity: We are ethical, honest, independent, and provide an objective perspective. Inclusivity: We work collaboratively to harness the diversity of people and ideas, both inside and outside of NIST, to attain the best solutions to multidisciplinary challenges. Excellence: We apply rigor and critical thinking to achieve world-class results and continuous improvement in everything we do.

Connect with NIST: National Institute of Standards and Technology

Visit Website

POPULAR POSTS BY NIST: National Institute of Standards and Technology

Press Release

New Method for Identifying Carbon Compounds

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Retweet on Twitter AWE International Magazine Retweeted
Avatar ION Science Ltd @ionscience ·
27 Mar

With organisations looking to lower safety risks for employees and improve their environmental performance, the demand for VOC monitoring has increased.

Speak with our technical experts on the stand at Sensor + Test 2023 in Nuremberg, Germany

Reply on Twitter 1640307694312497152 Retweet on Twitter 1640307694312497152 1 Like on Twitter 1640307694312497152 3 Twitter 1640307694312497152

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT