Open AWE Magazine menu
Sign Up Login

Home / Articles and Press Releases / Press Release / Natural Gas Facilities With No CO2 Emissions

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Press Release / Natural Gas Facilities With No CO2 Emissions

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Articles
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Press Release

Natural Gas Facilities With No CO2 Emissions

By TU Wien University

| Read Bio

Published: May 25th, 2017

Share this article

How can we burn natural gas without releasing CO2 into the air? This feat is achieved using a special combustion method that TU Wien has been researching for years: chemical looping combustion (CLC). In this process, CO2 can be isolated during combustion without having to use any additional energy, which means it can then go on to be stored. This prevents it from being released into the atmosphere.

The method had already been applied successfully in a test facility with 100 kW fuel power. An international research project has now managed to increase the scale of the technology significantly, thus creating all the necessary conditions to enable a fully functional demonstration facility to be built in the 10 MW range.

Isolating CO2 from other flue gases

It is much cleaner to burn natural gas than to burn crude oil or coal. However, natural gas has the huge disadvantage that it generates CO2 during combustion, which has a detrimental effect on the climate. The CO2 is usually part of the flue gas mixture, together with nitrogen, water vapour and other substances. In this mixed form, the CO2 can neither be stored nor feasibly recycled.

“In the facilities we are working with, however, the combustion process is fundamentally different,” explains Stefan Penthor from the Institute of Chemical Engineering at TU Wien. “With our combustion method, the natural gas does not come into contact with the air at all, because we divide the process into two separate chambers.”

A granulate made of metal oxide circulates between the two chambers and is responsible for transporting oxygen from air to fuel: “We pump air through one chamber, where the particles take up oxygen. They then move on to the second chamber, which has natural gas flowing through it. Here is where the oxygen is released, and then where flameless combustion takes place, producing CO2 and water vapour,” explains Penthor.

The separation into two chambers means there are two separate flue gas streams to deal with too: air with a reduced concentration of oxygen is discharged from one chamber, water vapour and CO2 from the other. The water vapour can be separated quite easily, leaving almost pure CO2, which can be stored or used in other technical applications. “The large-scale underground storage of CO2 in former natural gas reservoirs could be very significant in the future,” believes Stefan Penthor. The United Nations Intergovernmental Panel on Climate Change (IPCC) also sees underground CO2 storage as an essential component of any future climate policy. However, CO2 can only be stored if it has been separated as pure as possible – just as it is with the new CLC combustion method.

By separating the two flue gas streams, there is no longer any need to scrub the CO2 from the flue gas, thus saving a great deal of energy. Despite all this, electricity is generated in the usual way and the amount of energy released is exactly the same as that produced when burning natural gas in the conventional manner.

Successfully scaled up

Several years have passed since TU Wien was first able to demonstrate on a test facility that the CLC combustion method works. Now the big challenge was to redesign the process so it could be transferred to large-scale installations that would also be economically viable. Not only did the entire facility design have to be revised, new production methods for the metal oxide particles had to be developed too. “You need many tonnes of these particles for a large facility, so the economic feasibility of the concept depends significantly on being able to produce them easily and to a sufficiently high degree of quality,” says Stefan Penthor.

The SUCCESS research project has been working on issues like this one for three and a half years now. TU Wien has coordinated the project, involving 16 partner establishments from across the Europe, and between them, the group has managed to resolve all the important technical questions. The revised facility design was based on two fluidised bed technology patents held by TU Wien. “We’ve reached our goal: we’ve developed the technology to such a degree that work on a demonstration facility in the 10 MW range can begin any day now,” says Stefan Penthor. However, that next step is not one for the research institutes; what is needed now are private or public investors. The technology’s success will also depend on political will and on the prevailing conditions within the energy industry of the future. Additionally, this next step is also important because it is the only way to gain the experience necessary to be able to use the technology on an industrial scale in the long term.

In the meantime, the TU Wien research team has already set its sights on its next scientific goal: “We want to develop the method further so it can burn not just natural gas, but biomass too,” says Penthor. “If biomass were combusted and the CO2 separated out, not only would that be a CO2-neutral process, it would even reduce the total amount of CO2 in the air. So you could produce energy and do something good for the global climate at the same time.”

Share this article

ABOUT THE AUTHOR

TU Wien University

Through our research we “develop scientific excellence”, through our teaching we “enhance comprehensive competence”.
TU Wien has eight faculties lead by deans: Architecture and Planning, Chemistry, Civil Engineering, Computer Sciences, Electrical Engineering and Information Technology, Mathematics and Geoinformation, Mechanical and Industrial Engineering, and Physics.
The University is led by the Rector and four Vice Rectors (responsible for Research and Innovation, Academic Affairs, Infrastructure as well as Human Resources and Gender). The Senate has 26 members. The University Council, consisting of seven members, acts as a supervisory board.

Connect with TU Wien University

Visit Website

POPULAR POSTS BY TU Wien University

Press Release

Natural Gas Facilities With No CO2 Emissions

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT