Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Press Release / Monitoring Methane Emissions from Agriculture and Dairy Farming

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Press Release / Monitoring Methane Emissions from Agriculture and Dairy Farming

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Press Release

Monitoring Methane Emissions from Agriculture and Dairy Farming

By Edinburgh Sensors

| Read Bio

Published: February 02nd, 2017

Share this article

Methane (CH4) is the second most prevalent greenhouse gas emitted from human activities. In 2014, CH4 was responsible for around 11 percent of all US greenhouse gas emissions caused by human actions.

Methane is emitted by a range of natural sources such as marshlands, leakage from natural gas systems and livestock farming [1]. Domestic livestock such as cattle, sheep and goats, produce significant amounts of CH4 as part of the normal digestive processes in the ruminant stomach system. Ruminant animals host bacteria in their gastrointestinal systems to aid in the breakdown of plant material and some of these microorganisms (methanogens) use the acetate from the plant material to produce methane [1,2].

This means that whenever the animal eructates (burps) or defecates, it emits a significant quantity of methane at the same time. In addition, stockpiled rotting animal manure for use by farms in fertilizing fields can also be a potent source of the gas. From a global perspective agriculture is the primary source of CH4 emissions and ways to measure the effect and reduce the overall emissions are constantly being sought [3].

The Environmental Impact of Methane

Methane is an active component in the carbon cycle but the natural processes in soil and chemical reactions in the atmosphere that help remove it from the atmosphere are being overtaken by industrial-scale farming and gas production activities [4]. The lifetime of methane in the atmosphere is actually much shorter than the best known greenhouse gas carbon dioxide (CO2) (generally around 12 years), but CH4 is more efficient at trapping radiation than CO2 [5]. The comparative impact of CH4 on climate change is more than 25 times greater than CO2 over a hypothetical 100-year period.

Methane has a powerful greenhouse gas effect, and about 44 percent of anthropogenic livestock emissions (3.1 Gigatonnes CO2 equivalents per year) are in the form of methane (CH4). The remainder of emissions is shared between Nitrous Oxide (N2O , 29 percent) and Carbon Dioxide (CO2, 27 percent). Although methane doesn’t remain in the atmosphere for as long as carbon dioxide, it is far more devastating to the climate. To effectively reduce the impact of climate change both methane and carbon dioxide emissions must be addressed [6].

Monitoring Agricultural Methane Levels

It is generally accepted that both dairy and beef herds are important producers of methane. The quantification of the methane gas produced is difficult to accurately determine without the use of protracted experiments involving a cow in a respiration chamber for several days.

One of the methods in development is the use of gas sensors in milking parlours and cow sheds to monitor the methane produced by individual animals over a set time. While the respiration chamber remains as the benchmark, the gas sensor method is able to produce rapid and accurate estimates of methane emissions which, unlike a respiratory chamber, are not disruptive to agricultural activities [7]. The measurements are usually made during ‘milking’, which takes place between 3 and 6 times per day and are invaluable in the development of methane reducing diets and to identify low emission cow species.

Recent research [8,9] at the University of Queensland, Australia has examined the development of a vaccine from Kangaroo stomach bacteria against methane-producing bacteria in ruminant digestive systems (kangaroos produce no stomach methane). According to Professor Philip Garnsworthy of the University of Nottingham, School of Biosciences, “On-farm monitoring has the potential to decrease uncertainty, or at least to quantify sources of variation, and to test the outcomes of mitigation strategies, by measuring indicators of emissions under commercial conditions” [10,11].

Case Studies on Agricultural Methane Monitoring

A study of 82 cows in 2012 [12] was conducted in a commercial farming environment to quantify methane emissions from individual cows using a novel technique to sample the air released by eructation of cows during milking. Both eructation frequency and methane released per event were used to estimate the methane emission rate. Methane concentrations were measured using the Guardian Plus, a single infra-red methane analyser with a range of 0 to 10,000 mg/kg, for each milking station. Air was drawn through the instrument by an integral pump between the gas inlet port and analyser.

There was a good correlation between in situ infra-red measurements and benchmark respiration chamber measurements [13]. The study was also able to establish the validity of the IR method by comparing cows fed a high methane diet with a control group with a normal diet. A further 2012 study [14] of 215 cows examined the methane emission rate during milking over a period of five months using automatic gas analyzers in milking stalls.

The study was able to give additional validation to the non-invasive IR gas analysis regimen and also compare methane production from different cow species on different diets. IR gas analysis has proven to be useful, inexpensive and rapid in providing accurate measurements for methane from ruminants [15].

The Gascard NG for Agricultural Gas Monitoring

The Gascard NG Infrared Gas Sensor (Edinburgh Sensors Ltd.) is the ideal adjunct to any automatic gas detection system for measuring methane levels during milking (it can be used alongside other gas detection technologies if required). The Gascard NG infrared gas sensor has been designed to be easily integrated with gas detection systems that require high quality, accurate and reliable concentration measurement of a range of common gases including CO, CO2 and CH4.

The system incorporates flexibility and a range of important features including:

• Real-time temperature compensation

• On-board Barometric Pressure Correction across the 800 mbar – 1150 mbar range

• True on-board RS232 communications as well as the option of TCP/IP communications protocol

• Operating voltage range from 7-30v

• Field serviceable IR source

The Gascard NG uses patented dual wavelength Infra-Red (NDIR) sensor technology that provides accurate temperature and pressure compensation for methane gas levels, compatibility with a range of data handling systems as well as consistency of measurement. The Gascard NG is an ideal IR sensor for use in a farm environment as it is robust, accurate and reliable.

References

1. Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A. & Tempio, G., 2013. Tackling climate change through livestock – A global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome. 2. EPA (2010). Methane and Nitrous Oxide Emissions from Natural Sources. U.S. Environmental Protection Agency, Washington, DC, USA. 3. Methane: The other important greenhouse gas, https://www.edf.org/methane-other-important-greenhouse-gas Accessed 13/12/2016 4. Zhou, Yiqin (2011). Comparison of Fresh or Ensiled Fodders (e.g., Grass, Legume, Corn) on the Production of Greenhouse Gases Following Enteric Fermentation in Beef Cattle. Rouyn-Noranda, Qué.: Université du Québec en Abitibi-Témiscamingue. N.B.: Research report. 5. FAO (2006). Livestock’s Long Shadow–Environmental Issues and Options. Rome, Italy: Food and Agriculture Organization of the United Nations (FAO). Retrieved October 27, 2009. 6. IPCC AR5 WG1 (2013). “Climate Change 2013: The Physical Science Basis – Anthropogenic and Natural Radiative Forcing Supplementary Material” (PDF). Cambridge University Press 7. Bell MJ, Potterton SL, Craigon J, Saunders N, Wilcox RH, Hunter M, Goodman JR and Garnsworthy PC, 2014. Variation in enteric methane emissions among cows on commercial dairy farms. Animal: An international journal of animal bioscience. 8(9), 1540-6 8. Rachel Nowak (25 September 2004). “Burp vaccine cuts greenhouse gas emissions”. New Scientist. Retrieved 4 November 2011. 9. A.D.G. Wright, et al., Reducing Methane Emission in Sheep by Immunization against rumen methanogens, Vaccine (vol 22, p 3976-3985 10. Bell MJ, Saunders N, Wilcox RH, Homer EM, Goodman JR, Craigon J and Garnsworthy PC, 2014. Methane emissions among individual dairy cows during milking quantified by eructation peaks or ratio with carbon dioxide. Journal of dairy science. 97(10), 6536-46 11. AO. 2010. Greenhouse Gas Emissions from the Dairy Sector: A Life Cycle Assessment. Food and Agriculture Organization of the Unit-ed Nations, Rome, Italy. 12. P. C. Garnsworthy , J. Craigon , J. H. Hernandez-Medrano , and N. Saunder, On-farm methane measurements during milking correlate with total methane production by individual dairy cows, J. Dairy Sci. 95 :3166–3180 13. Gardiner, TD, Coleman, MD, Innocenti, F, Tompkins, J, Connor, A, Garnsworthy, PC, Moorby, JM, Reynolds, CK, Waterhouse, A and Wills, D, 2015. Determination of the absolute accuracy of UK chamber facilities used in measuring methane emissions from livestock Measurement. 66, 272-279 14. P. C. Garnsworthy , J. Craigon , J. H. Hernandez-Medrano , and N. Saunders, Variation among individual dairy cows in methane measurements made on farm during milking, J. Dairy Sci. 95 :3181–3189 15. Methane and Climate Change, edited by Pete Smith, David Reay, Andre Van Amstel, 2010, Earthscan

Share this article

ABOUT THE AUTHOR

Edinburgh Sensors

Founded in 1971, Edinburgh Sensors has become one of the world’s leading manufacturers of cutting-edge gas detection solutions.

The application of our continued research and development has contributed to several major advances in the world of infrared gas sensing and delivered a comprehensive portfolio of products for the detection of CO, CO2, CH4 and many other gases.

Our diverse range of robust OEM Gas Sensors and Gas Monitors enable fast, reliable and continuous gas detection. With a global reputation for high performance, our products are an ideal solution for those applications where accuracy, safety and reliability are paramount.

Connect with Edinburgh Sensors

Visit Website

POPULAR POSTS BY Edinburgh Sensors

Press Release

Reducing the Effects of Methane from Cows in Cattle Farming with Methane Monitors

Press Release

Air Sampling Techniques

Press Release

Studying the Effect of Global Warming on Tropical Crops

Press Release

Simulating the Effect of Climate Change on Agriculture

Press Release

Using Anaerobic Biomass Digestion to Produce Hydrogen and Biofuel

Press Release

Simulating Agricultural Climate Change Scenarios

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
20 Mar

📣WE HAVE AN EXCITING ANNOUNCEMENT📣

Want to find out the latest in gas detection? You won't want to miss this!

Launching this week our specialist gas summit, with
@HSIMagazine and @HSMEMagazine.

https://www.aweimagazine.com/webinars/accelerating-gas-detection-in-hse/

#aweinternational #GasDetectionSummit #gasdetection

Reply on Twitter 1637802450164805637 Retweet on Twitter 1637802450164805637 Like on Twitter 1637802450164805637 Twitter 1637802450164805637

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT