Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Press Release / Improved Determination of Volatile Organic Compounds in Water

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Press Release / Improved Determination of Volatile Organic Compounds in Water

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Press Release

Improved Determination of Volatile Organic Compounds in Water

By MERCK

| Read Bio

Published: November 14th, 2018

Share this article

Originally published in Supelco®’s Analytix Reporter Journal Issue 3 2018 by Merck KGaA, Darmstadt, Germany Visit SigmaAldrich.com/ar-reg

The analysis of water for volatile organic compounds is important due to their toxicity. The current methods for this determination lack of sensitivity, selectivity or capability for automation. This paper presents the new ISO 17943 Standard using Solid Phase Microextraction (SPME) and GC/MS. The sample preparation by SPME enables low limits of detection and easy automation of the whole method. GC/MS provides the required sensitivity and selectivity. This ISO Standard was validated by an interlaboratory trial, which results confirm the outstanding performance for this method.

Introduction

Volatile Organic Compounds (VOCs) can occur from natural sources such as plant scents. However, a large amount of VOCs do have an anthropogenic origin, because they are released from products in daily use or emitted during the manufacturing of such products, as well as from polymers, adhesives, paints, petroleum products or pharmaceuticals. Typical applications for VOCs are use as additives for gasoline or as solvents and hydraulic fluids or for dry-cleaning. As many VOCs are toxic or are known or suspected human carcinogens, contamination of water resources is a serious human health concern worldwide.

Because of this, many international regulations have been established to limit and control the amount of VOCs in drinking water, groundwater or surface water. Examples of such regulations are the Safe Drinking Water Act (SDWA)1 in the USA, and a corresponding law in Canada that established national standards for drinking water including VOC listings that are based on health considerations. Another example is the European Council Directive 98/83/EC on the quality of water intended for human consumption that regulates the values for individual volatile organic substances.2 In the EU Water Framework Directive (WFD) in article 16 of the Directive 200/60/EC3 a “strategy against pollution of water” is described.

According to Directive 2008/105/EC (EQS Directive)4 Environmental Quality Standards (EQS) values for single VOCs should be in the range of 0.4 to 20 μg/L. In annex V of WFD (standards for monitoring of quality elements) the use of ISO and CEN standards for the analysis of water is required, if available.

The existing ISO and CEN standards for the determination of VOCs in water are not state-of- the-art methods anymore. ISO 103015 uses Liquid/ Liquid Extraction (LLE) in combination with Gas Chromatography (GC) and detection using Flame Ionization Detection (FID) or Electron Capture Detection (ECD). ISO 114236 employs headspace (HS) sampling in combination with GC/FID or GC/ECD. For certain relevant VOCs, the required limits of detection cannot be achieved using these ISO standards because the detectors are not sensitive or selective enough.

Figure 1: SPME fiber holder with fiber immersed into aqueous sample

ISO 156807 exhibits an alternative by using purge- and-trap enrichment and Gas Chromatography-Mass Spectrometry (GC-MS) analysis leading to better selectivity and limits of detection. The downside of purge-and-trap is the susceptibility of the trap to become contaminated and that automation is rather challenging to achieve.8

Improved Method for Determination of VOCs in Water by HS-SPME and GC/MS: ISO Standard 17943

Solid Phase Microextraction (SPME) in combination with GC-MS is an attractive alternative for the determination of VOCs in water. SPME was developed by Janusz Pawliszyn in 19909 (Figure 1). Since then SPME has gained broader acceptance in environmental, pharmaceutical and food analysis as demonstrated by the growing number of publications on SPME developments and applications. The prevalence of this technique was additionally increased by the automation of SPME using regular GC autosamplers beginning in 1993. The use of SPME for the extraction of VOCs from water is described in several publications.10-12 In these publications, headspace SPME (HS-SPME) was proven to be a reliable and beneficial alternative to classical methods for VOC determination in water. Furthermore, SPME has been successfully used in many other official methods.13-15

Due to this, the new ISO standard 17943 was developed for VOCs in water. The scope of the standard is the determination of more than 60 VOCs from very different classes such as halogenated hydrocarbons, gasoline additives (like BTEX, MTBE and ETBE), volatile aromatic compounds and highly odorous substances like geosmin and 2-methylisoborneol in drinking water, groundwater, surface water and treated wastewater by HS-SPME and GC-MS. Of course the limit of detection depends on the matrix, on the specific compound and on the applied mass spectrometer, but for most compounds in ISO 17943, it is equal to or better than 0.01 μg/L. Additional validation data derived from standardization work show applicability of the method within a concentration range from 0.01 μg/L to 100 μg/L for individual substances.

Global Interlaboratory Trial for Validation of New ISO Standard 17943

As part of the development of this new ISO standard, an international interlaboratory trial was conducted to validate the new method.16 Each of the labs had to determine the concentration of 61 compounds in the two water samples (one surface water, one wastewater). The surface water sample was taken from an urban and industrialized area (the Ruhr River in Muelheim, Germany). The municipal wastewater sample was taken from a plant effluent. Both samples had been pre-treated to stabilize them and had been spiked with concentrations unknown to the participating labs in the range of 0.02 – 0.80 μg/L (~ 50 % < 0.10 g/L) for the surface water and 0.05 – 3.0 μg/L (~ 50 % < 0.50 g/L) for the wastewater. The labs in the interlaboratory trial had to conduct four independent replicate analyses from each of the two samples, strictly following the procedure as prescribed in the draft standard method. All laboratories were provided with a set of calibration solutions placed in three ampoules each containing certified reference substances of the 61 VOCs dissolved in methanol. These stock solutions contained the individual substances in concentrations of 100 µg/mL each and were intended to be used for preparation of the corresponding aqueous multi-component reference solutions used for calibrating the total procedure. The results had to be delivered within 30 days after receipt of the samples.

The Supelco® Application Lab was one participant in the interlaboratory trial. The two water samples were analyzed according to the drafted ISO Standard 17943 (Table 1 & 2, Figure 2) using toluene-d8, benzene-d6 and fluorobenzene as internal standards. For the GC analysis a VOCOL® capillary GC column was used, which is an intermediate polarity column that is designed for analysis of VOCs and provides great retention and resolution of highly volatile compounds. For HS-SPME a DVB/CAR/PDMS fiber was used which was also used by the majority of the interlaboratory trial participants. A smaller share of the labs used a CAR/PDMS fiber.

According to ISO Standard 17943 both the Carboxen/PDMS (85 μm) and the DVB/Carboxen/PDMS (50/30 μm) fiber can be used.



Evaluation of the Interlaboratory Trial

More than 40 labs from all over the world registered for this interlaboratory trial. Out of these a total of 27 labs reported results to be included in the evaluation process according ISO 5725-2.17 Nine laboratories did not submit any results. Six labs had to be excluded from the valuation due to significant deviation from the prescribed procedure. Some single results had to be excluded due to outliers.

All 61 parameters had been analyzed by ten labs and nearly all parameters had been analyzed by nine labs. Expressed in a different way, this resulted in the fact that nearly each of the 61 VOCs had been analyzed by more than 20 labs, which provides a valid base for statistical evaluation. The data was analyzed for the overall mean of results (without outliers), the recovery rate (from assigned value), the reproducibility (variation between different labs) and the repeatability (variation within a lab).

One example of such an evaluation is shown in Figure 3 for 2-chlorotoluene. For this compound, results from 24 labs could be evaluated. The overall mean value (green line) is very close to the assigned value (purple line). The majority of the 24 labs, even those labs that were new to SPME, achieved results very close to the assigned value. The recovery rate for more than 90% of the compounds was between 84 and 116 % (surface water) and 81 and 118 % (wastewater). The reproducibility (variation between laboratories), for more than 90% of the compounds, was less than 31% (surface water) and less than 35% (wastewater), while the repeatability (variation within a lab) for more than 90% of the compounds was less than 10% (surface water) and less than 8% (wastewater).

Summary

The outstanding results in the interlaboratory trial underscore the high performance, reliability and reproducibility of HS-SPME in combination with GC/MS for the determination of VOCs in water. The new ISO 17943 is an improvement on existing official methods for this determination in terms of sensitivity and selectivity. In addition, the capability for full automation of SPME is beneficial for running this analysis 24/7.

For more information on our complete environmental testing workflow solutions, please visit: SigmaAldrich.com/environmental-testing

Share this article

ABOUT THE AUTHOR

MERCK

Our purpose is to solve the toughest problems in life science by collaborating with the global scientific community – and through that, we aim to accelerate access to better health for people everywhere.

Connect with MERCK

Visit Website

POPULAR POSTS BY MERCK

MERCK

Press Release

Fast and High-Resolution LC-MS Separation with Ascentis® Express PFAS HPLC Columns

Press Release

Carbonyls in Air

Article

Carbon Adsorbents for Thermal Desorption

Press Release

ASSET™ EZ4 Dry Samplers for Isocyanates

Press Release

radiello® Passive Samplers and Vapor Intrusion

Article

RFID Tracking of Lab Consumables Boosts Efficiency, Safety and Traceability

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
25 Jan

Soil is a vital component of natural capital, hosting rich biodiversity and providing critical ecosystem services, such as food production, water purification and carbon storage.

Read more from the @EUEnvironment here:
https://www.aweimagazine.com/press-release/monitoring-soil-threats-in-europe/

#aweinternational #EEA #soil

Reply on Twitter 1618284319327543296 Retweet on Twitter 1618284319327543296 Like on Twitter 1618284319327543296 Twitter 1618284319327543296

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT