Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Press Release / Air Sampling Techniques

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Press Release / Air Sampling Techniques

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Press Release

Air Sampling Techniques

By Edinburgh Sensors

| Read Bio

Published: September 12th, 2019

Share this article

Monitoring air quality is both an essential part of health and safety and for ensuring a pleasant workplace environment. For example, in breweries or dry food storage areas, where carbon dioxide is produced as part of the fermentation process, monitoring gas levels is key for protecting workers’ health.1 ­Even in office buildings, where chemical processing may not be a risk, monitoring the chemical composition of the air can help avoid ‘sick building syndrome’ and maximize employee comfort.2

Air sampling is a way to monitor air composition as a function of time but there are is range of different approaches that can be used to perform air sampling. Each approach has advantages and disadvantages and the best approach is dependent on a combination of available resources, the necessary application and the potential health risks posed by the workplace. For example, for workplaces were high levels of asphyxiant or toxic gases are a risk, constant, online monitoring of air composition may be a legal health and safety requirement.3

Grab Sampling

Grab sampling is where a sample of air is taken at a specific time and analyzed. Often, the sample is removed from the environment and taken to a different location for testing, if it is not feasible to do the types of composition analysis required in situ.

While grab sampling is convenient and produces relatively small datasets, as the number of samples will just be the number of grabs taken during the day, the ability to perform offline analysis has some advantages.

For air analysis, techniques that are often used for the analysis of grab samples include gas chromatography or hyphenated versions of the technique that include additional gas chromatography or mass spectrometers for more accurate identification of compounds.4 Such analyzers provide very high-quality information and excel for complex mixtures.

Passive or Active Sampling

Grab sampling though is very labor-intensive and large numbers of samples may be necessary to accurately characterize a site. One alternative to this is to use continual monitoring where a device is placed in situ and can continually collect samples that can then be analyzed later.  

Gas monitoring devices for this type of sampling can be classified as either active or passive. Passive sampling technology is any device that monitors gas concentrations by simply allowing the air to pass over it rather than being pumped. The motion of the gas molecules means they will collide with a certain probability with a sorbent where they can then be detected.5

In active sampling, rather than relying on gas diffusion into the device, the gas is pumped into the sorbent medium. Active sampling devices tend to be more bulky and complex due to the need for pumping equipment as well as the detector, however, the measured gas concentrations are less sensitive to environmental influences such as changes in wind speed or humidity.

Using sorbent tubes to collect air samples though does have one key disadvantage, the tubes still need to be removed for later analysis. Ideally, an on-site sampler would also contain a detector which could be connected to a data stream for fully online, automated monitoring.

Edinburgh Sensors

The need for continual data logging 24/7 monitoring of air quality in potentially hazardous areas is why, for air sampling, Edinburgh Sensors offers nondispersive infrared-based detectors (NDIR) for the gas monitoring products.6

NDIR technologies allow for continual online gas analysis all within one small device. Edinburgh Sensors offer several ‘boxed’ units, such as the Guardian NG7 and Boxed Gascard,8 that simply need a connection to a power supply and reference gas and can immediately be used. The Guardian NG series comes with its own on-device display which can show current readings, plot some historical data and has a menu interface for easy change of settings. As it can be used as a stand-alone device, the Guardian NG has a built-in alarm system so that if any gas concentrations exceed a certain range, a built-in alarm can be sounded.

Edinburgh Sensors has NDIR devices suitable for detecting a wide range of gases, including carbon dioxide, carbon monoxide, nitrous oxide, and various refrigerants. The Guardian NG and GasCard9 are the most versatile of the gas monitors offered, capable of detecting the largest variety of gases and both offer excellent sensitivity, accuracy and rapid response times.

Guardian NG

For air sampling in challenging environmental conditions, all of Edinburgh Sensor’s devices offer pressure and humidity compensated readout across a humidity range of 0 – 95 %. The Guardian NG boasts a ± 2 % accuracy over its full detection range, which is 0 – 100 % in the case of gases like methane and carbon dioxide. For some air sampling applications, it may be advantageous rather than having static ‘boxed’ devices, designed for installation on walls, to implement the gas monitoring on unmanned aerial vehicles or drones. The Gascard NG is a highly flexible, lightweight sensor with a sufficiently low power draw that it can be incorporated into such applications.

All of Edinburgh Sensors gas monitors can be interfaced with external networked data logging, ideal for true continual air sampling.

References

  1. Hatice Pekmez. (2017). Cereal Storage Techniques: A Review. Journal of Agricultural Science and Technology B, 6(2), 1–6. https://doi.org/10.17265/2161-6264/2016.02.001
  2. WHO on Sick Building Syndrome (2019) https://www.wondermakers.com/Portals/0/docs/Sick%20building%20syndrome%20by%20WHO.pdf
  3. HSE on Carbon Dioxide, (2019) http://www.hse.gov.uk/carboncapture/carbondioxide.htm
  4. Lerner, B. M., Gilman, J. B., Aikin, K. C., Atlas, E. L., Goldan, P. D., Graus, M., … De Gouw, J. A. (2017). An improved, automated whole air sampler and gas chromatography mass spectrometry analysis system for volatile organic compounds in the atmosphere. Atmospheric Measurement Techniques, 10(1), 291–313. https://doi.org/10.5194/amt-10-291-2017
  5. Zabiegała, B., Kot-Wasik, A., Urbanowicz, M., & Namieśnik, J. (2010). Passive sampling as a tool for obtaining reliable analytical information in environmental quality monitoring. Analytical and Bioanalytical Chemistry, 396(1), 273–296. https://doi.org/10.1007/s00216-009-3244-4
  6. Edinburgh Sensors (2019) https://edinburghsensors.com/about/our-history/
  7. Guardian NG (2019) https://edinburghsensors.com/products/gas-monitors/guardian-ng/
  8. Boxed GasCard (2019) https://edinburghsensors.com/products/oem/boxed-gascard/
  9. Gascard NG, (2019), https://edinburghsensors.com/products/oem/gascard-ng/

Share this article

ABOUT THE AUTHOR

Edinburgh Sensors

Founded in 1971, Edinburgh Sensors has become one of the world’s leading manufacturers of cutting-edge gas detection solutions.

The application of our continued research and development has contributed to several major advances in the world of infrared gas sensing and delivered a comprehensive portfolio of products for the detection of CO, CO2, CH4 and many other gases.

Our diverse range of robust OEM Gas Sensors and Gas Monitors enable fast, reliable and continuous gas detection. With a global reputation for high performance, our products are an ideal solution for those applications where accuracy, safety and reliability are paramount.

Connect with Edinburgh Sensors

Visit Website

POPULAR POSTS BY Edinburgh Sensors

Press Release

Reducing the Effects of Methane from Cows in Cattle Farming with Methane Monitors

Press Release

Air Sampling Techniques

Press Release

Studying the Effect of Global Warming on Tropical Crops

Press Release

Simulating the Effect of Climate Change on Agriculture

Press Release

Using Anaerobic Biomass Digestion to Produce Hydrogen and Biofuel

Press Release

Simulating Agricultural Climate Change Scenarios

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
13h

With the XD7000 VIS & XD7500 UV/VIS spectrophotometers from Lovibond®, anyone who needs lab quality for reliable measurement results, also directly on site, gets exactly that and more.

Find out more from @TintometerInc:
https://www.aweimagazine.com/press-release/xd-series-scores-with-cost-efficiency-and-highest-level-all-along-the-line/

#aweinternational #tintometer

Reply on Twitter 1620004515624943618 Retweet on Twitter 1620004515624943618 Like on Twitter 1620004515624943618 1 Twitter 1620004515624943618

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT