Open AWE Magazine menu
Sign Up Login

Home / Articles and Press Releases / Articles / Towards a Climate Positive Society

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Articles / Towards a Climate Positive Society

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Articles
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Articles

Towards a Climate Positive Society

By Mani Sarathy King Abdullah University of Science and Technology (KAUST)

| Read Bio

Published: April 28th, 2021

Share this article

Volatile alkanes ubiquitous in human activities can rapidly acquire oxygen atoms in a free radical chain reaction, a process significant for fuel combustion and air pollution.

Alkanes are the most common class organic molecules in fuels and have a much more complex relationship with oxygen than previously thought. Researchers from KAUST, University of Helsinki, University of Science and Technology China, and other international collaborators have shown that alkanes participate extensively in autoxidation reactions with oxygen molecules1 . The discovery, which overturns current chemical wisdom, has implications for air quality prediction and efficient fuel combustion in engines.

“alkanes participate extensively in autoxidation reactions with oxygen molecules, this overturns current chemical wisdom”

The Autoxidation process

Autoxidation is a chemical process in which oxygen molecules rapidly and sequentially add to organic molecules in a radical driven chain reaction. These types of reaction mechanisms won Semenov and Hinshelwood the 1956 Nobel Prize in Chemistry. 80 years later, scientists are still developing new insights into autoxidation chemistry. The process is critical for the timing of fuel combustion in engines and is a key step in the atmospheric conversion of volatile organic molecules into air-borne aerosol particles. Improved knowledge of these types of reaction schemes can help design more efficient engines and predict the role of anthropogenic emissions on air quality and climate change.

Towards a Climate Positive Society

“Conventional knowledge suggests atmospheric autoxidation requires precursor molecules with features such as double bonds or oxygen[1]containing moieties,” says Zhandong Wang, now a professor at the University of Science and Technology of China. Alkanes – the primary component of combustion engine fuels and an important class of urban trace gases – do not have these structural features. “Alkanes were thought to have only minor susceptibility to extensive autoxidation,” Wang says.

To overturn this conventional knowledge, Sarathy, Wang and colleagues showed that alkanes do undergo extensive autoxidation under the hot high-pressure conditions of combustion in engines2 . However, the team recently found that this autoxidation process goes further than even what they had originally imagined just a few years ago. The team then set out to explore the possibility that alkane autoxidation also occurs under atmospheric conditions, which is at temperatures and pressure much lower than in engines. It was conventionally thought that such autoxidation of alkanes could not occur at atmospheric conditions because the temperatures are simply too low.

“In 2016, we collaborated with Mikael Ehn and Matti Rissanen at University of Helsinki to win a KAUST Competitive Research Grant,” says Wang. “That was the beginning of this work.”

The team used a state-of-the-art analytical technique, called chemical ionization atmospheric pressure interface time-of-flight mass spectrometry, to detect products of atmospheric alkane autoxidation. “Strikingly, the yield of highly oxygenated organic molecules containing six or more oxygen atoms was much higher than expected,” Wang says.

Air quality

Good air quality is essential for our health, quality of life and the environment. Air becomes polluted when it contains substances which can have a harmful effect on the health of people, animals and vegetation. The main causes of air pollution include transport, domestic combustion and industrial processes.

Many human activities release what are known as greenhouse gases into the atmosphere, these gases include carbon dioxide, methane and low level ozone. The overwhelming body of evidence shows that the level of these gases in the atmosphere is increasing, and that they are starting to warm the planet. In the UK this warming effect is expected to give us warmer, wetter winters and hotter summers with an increased threat of droughts.

The main greenhouse gas of concern is carbon dioxide, or CO2, which is released when we burn fossil fuels such as coal, oil and gas. National and international efforts to reduce CO2 emissions have focused on attempts to set limits on CO2 emissions, and encouragement for technologies that can reduce CO2 emissions.

However, these issues are not unrelated:

• Ozone and black carbon are often considered as ‘local’ pollutants, but are also major climate change drivers. Other local air pollutants can also affect the climate

• Many of the sources of both CO2 and local air pollution are the same, including vehicle exhausts, factory chimneys, energy and heating

Great benefits can be realised if both issues are tackled in an integrated way. However initiatives which focus just on one issue or pollutant, without regard to others, can lead to major increases in pollution.

Under combustion conditions, the team also observed alkanes that had undergone up to five sequential O2 additions, significantly higher than the three additions they observed previously. In engines, these types of reactions result in fuel autoignition, and thereby govern the efficiency of engine operation. By including these new pathways into engine simulations, engineers can discover new fuel formulations offering improved engine efficiency and reduced carbon emissions.

Industry partners

The KAUST team works closely with industry partners to put this science into real world practice. In one partnership, the team works with McLaren Racing to improve fuels for Formula 1 racing vehicles. “By working closely with cutting edge Formula 1 engine technologies, we are able to design new fuel formulations that reduce harmful emissions while also improving engine performance; essentially allowing the car to go faster and further with less fuel being burnt,” says Sarathy. “We are also developing tailor-made carbon neutral e-fuels that are made from renewable hydrogen and CO2 captured from air. The fundamental scientific knowledge gained from our work on autoxidation helps us design these renewable fuels from first principles.”

Ambient air pollution

The following are the main ambient air pollutants and their sources.

Particulate Matter (PM10 AND PM2.5)

Particulate matter (PM) is a complex pollutant as it contains a variety of components in variable concentrations. The principal source of particulate matter in European cities is road traffic emissions, particularly from diesel vehicles. It is also emitted from industrial combustion plants and public power generation, commercial and residential combustion, and some non[1]combustion processes (e.g. quarrying). Natural sources include volcanoes, dust storms and sea salt. Whilst these generally produce only a small percentage of fine particulate matter they can contribute significantly to local breaches of the regulatory limit. Levels of PM are highest in urban areas as they are a traffic-related pollutant. Secondary sources, from material originally in gaseous form have been taken up into the particulate phase and include: sulphuric acid and ammonium sulphate from oxidation of sulphur dioxide; ammonium and other nitrates derived from oxidation of nitrogen oxides; and semi-volatile organic compounds.

“particulate matter (PM) is a complex pollutant as it contains a variety of components in variable concentrations”

Towards a Climate Positive Society

Particulate matter is categorised according to its size in micrometres. PM10 refers to particles under 10 micrometres, sometimes called the ‘coarse fraction’. PM2.5 refers to particles under 2.5 micrometres, sometimes called the ‘fine fraction’. PM2.5 is thought to be more damaging to human health than PM10.

Nitrogen Dioxide (NO2)

Nitric oxide (NO) is produced during high temperature burning of fuel (e.g. road vehicles, heaters and cookers). When this mixes with air, NO2 is formed. Levels are highest in urban areas as it is a traffic-related pollutant.

Ozone (O3)

Ground level ozone is a secondary pollutant; it is formed through a chemical reaction of volatile organic compounds and nitrogen dioxide in the presence of sunlight, so levels are generally higher in the summer. The highest levels tend to be found in rural areas downwind of urban areas or industrial sites.

Sulphur Dioxide (SO2)

Fossil fuel combustion (principally power stations), conversion of wood pulp to paper, manufacture of sulphuric acid, smelting, incineration of refuse. The most common natural source is volcanoes.

Volatile Organic Compounds (VOCS)

Benzene The main source of atmospheric benzene in Europe is petrol vehicles, which accounts for about 70% of emissions. Another 10% comes from the distillation, refining and evaporation of petrol from vehicles.

Other VOCs play a role in the photochemical formation of ozone in the atmosphere.

1,3-Butadiene The main source of 1,3-Butadiene is also principally from road traffic, in the combustion process of petrol and diesel vehicles. Unlike benzene it is not a constituent of fuel but is produced through the combustion of olefins. An additional source is from industrial processes such as synthetic rubber manufacture.

Carbon Monoxide (CO)

CO forms when carbon fuels are burned, either in the presence of too little oxygen or at too high a temperature. One of the main causes is idling vehicle engines and vehicle deceleration. Smaller amounts are released into the atmosphere from organic combustion in waste incineration and power station processes. Levels are highest in urban areas due to its close association with road traffic. However, in the UK levels are generally low being well below the targets set by the Government.

Lead (PB)

As much of the airborne emission of lead originates from road traffic, concentrations have decreased with most cars running on unleaded and lead replacement petrol. Other sources of lead pollutants include waste incineration and metal processing. The largest industrial use is manufacturing batteries.

Toxic Organic Micro-Pollutants (TOMPS)

Towards a Climate Positive Society

PAHs (Polycyclic Aromatic Hydrocarbons), PCBs (Polychlorinated Biphenyls), Dioxins, Furans

Produced by the incomplete combustion of fuels, road transport and industrial plant are the largest source. Open burning is a major source in the UK and comparatively large amounts are released on and around bonfire night, whilst there is increasing concern over domestic wood burning for heating. Tobacco smoke is also a source.

The team is further expanding its reach by developing clean fuels for marine engines and aircrafts. “Our ultimate goal is to minimise the environmental impact of engines by pursuing deep scientific knowledge of combustion processes as well as the fate of emissions in the atmosphere,” says Sarathy

“research findings will allow us to better perform predictive simulations of combustion engines and atmospheric processes that impact air quality”

To this end, a unique finding was enabled by experiments performed at the Leibniz Institute for Tropospheric Research (TROPOS) by Dr. Torsten Berndt. Experiments were conducted on alkanes in the presence of nitric oxide (NO) Conventional knowledge suggested that NO prevents the autoxidation process from proceeding; however, the team found, remarkably, that alkane autoxidation can actually be enhanced in the presence of NO emissions. The retools of important implications of secondary pollutant formation in urban air quality where many chemicals interact with each other.

Summary

All these findings enrich our understanding of autoxidation processes and will allow us to better perform predictive simulations of combustion engines and atmospheric processes that impact air quality and climate.

We are now working with the department of Health, Safety and Environment in KAUST to better understand atmospheric chemical processes using real-world measurements. Using data acquired at the KAUST-based monitoring station, we are attempting to unravel complex atmospheric chemical processes in the western region of Saudi Arabia. Similar studies need to be done in various regions of the world.

Towards a Climate Positive Society

Share this article

ABOUT THE AUTHOR

Mani Sarathy King Abdullah University of Science and Technology (KAUST)

KAUST aspires to be a destination for scientific and technological education and research. By inspiring discoveries to address global challenges, we strive to serve as a beacon of knowledge that bridges people and cultures for the betterment of humanity.
KAUST advances science and technology through distinctive and collaborative research integrated with graduate education. We are a catalyst for innovation, economic development and social prosperity in Saudi Arabia and the world
We exist for the pursuit and advancement of scientific knowledge and its broad dissemination and benevolent application. We strive to enhance the welfare of society with a special focus on four areas of global significance – food, water, energy and the environment.
www.kaust.edu.sa

POPULAR POSTS BY Mani Sarathy King Abdullah University of Science and Technology (KAUST)

Articles

Towards a Climate Positive Society

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT