Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Article / The Global Potential of Wastewater

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Article / The Global Potential of Wastewater

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Article

The Global Potential of Wastewater

By David Murphy, King Abdullah University of Science and Technology (KAUST)

| Read Bio

Published: May 15th, 2018

Share this article

A quick online search confirms the unquestionable importance of water globally and the role it plays in human survival. Be it the 844 million people worldwide who lack even a basic drinking water service(1), including the 159 million people who are dependent on surface water or the at least two billion people who use a drinking water source contaminated with faeces(2). Or, how by 2025, half of the world’s population will be living in water-stressed areas(3). Factors such as increasing worldwide population growth and increased levels of global warming mean that the world’s freshwater resources are increasingly strained and drained.

Now more than ever, it is crucial for the scientific community to discover solutions for freshwater ecosystems while meeting the human need for safe water. Peiying Hong, an assistant professor of environmental science and engineering at the King Abdullah University of Science and Technology (KAUST), dedicates the majority of her time to water research, and in particular, wastewater and harnessing its potential to address global water scarcity and to improve global health issues in developing countries. Hong’s research aims to understand the roles and interactions of microorganisms in ecosystems and utilise these insights to solve problems related to water quality and water reuse.

Through her and her team’s ongoing research, Hong believes that treated wastewater is a valuable alternative water resource, noting, “We believe we can reuse water, but first we need to convince people to reuse wastewater – we need to convince them it is safe.”

From Singapore to Saudi Arabia

As a native of Singapore, Hong is all too aware of the need to have readily accessible safe groundwater supplies and the role desalination and treated wastewater can play in meeting Singaporeans’ water needs. It was during her time at the National University of Singapore (NUS) where Hong first developed molecular methods to detect wastewater contamination. At NUS, she spent one year as a research engineer and an additional year as a research fellow.

“I was a PhD student in NUS when our then-President Shih Choon Fong became the first KAUST president. That was when I became aware of KAUST and the research pillars here. I thought the research pillars that KAUST took up were very relevant and would create a significant impact on society. Therefore, when the opportunity arose in 2011, I applied for the faculty position and came to join KAUST,” Hong said.

“Hong’s research at KAUST aims to address global water scarcity issues by promoting the use of alternative water resources like treated wastewater”

According to Singapore’s National Water Agency, PUB, the demand for water in Singapore is currently about 430 million gallons a day. To put that in context, that is enough water to fill 782 Olympic-sized swimming pools. PUB also believes that “by 2060, Singapore’s total water demand could almost double… and that desalination will meet up to 85 percent of Singapore’s future water demand.”

“In addition to desalinated waters, treated wastewater also forms a very important source of water for my home country. Through research and development, Singapore is now self-sufficient in water, and hence I believe that the same can be done to address water scarcity issues in many other countries such as Saudi Arabia,” Hong said.

Current research

Hong’s current research at KAUST aims to address global water scarcity issues by promoting the use of alternative water resources like treated wastewater and seawater to alleviate the demand on our nonrenewable freshwater supplies. The bulk of her research focuses on assessing and improving the safety of treated wastewater.

The main goal of her research and research questions is to identify critical knowledge gaps and exploit new approaches to deliver novel insights that advance water reuse programmes in a safe and sustainable manner. These approaches include: implementing engineering approaches that balance both sustainability and safety concerns, developing best management practices to minimise risks associated with water reuse and facilitating the development of policy, regulation and institutional initiatives.

The basis for the research directions within her team involves understanding three core principles: firstly, the diversity, fate and persistence of microbial contaminants in wastewater; secondly, how existing wastewater treatment technologies fare in terms of removing microbial contaminants; and thirdly, how anaerobic processes can be developed into a safe and sustainable technology to treat wastewater. Hong and her group seek to provide the fundamental science and goal-oriented research underpinning improvements in water health and water management.

Water issues in the Kingdom

Upon joining KAUST in 2012, Hong observed that there were two significant problems in regards to wastewater reuse programmes in Saudi Arabia. The first problem being, as Hong explained, that “roughly 50 percent of the country is connected to sewage pipelines, with the remaining 50 percent reliant on septic tanks or on the direct discharge of partially treated wastewater into the sea or man-made lakes.”

The second problem she noticed stems from the potential high diversity of contaminants that are present in sewage as a result of global people movement. In Jeddah, a mere 133 kilometres from her base at KAUST, Hong has the perfect natural laboratory for her research. Annually, millions of religious pilgrims from around the world visit the Kingdom of Saudi Arabia to attend Hajj – the annual Islamic pilgrimage to the holy city of Mecca, a pilgrimage that all adult Muslims must undertake at least once in their lifetime. With each visit, visitors to Jeddah and the surrounding area add their microbes to the local wastewater stream.

“Many pilgrims come from developing countries where healthcare might be limited and consumption of off-the-shelf antibiotics is rampant. The lack of adequate sewerage connectivity, which is exacerbated by a seasonally transient population, promotes the dissemination of antibiotic-resistant pathogens into the wastewater and environment,” Hong said.

Because of this, her team seeks answers to the following four research questions: Are there new or emerging microbial contaminants in wastewaters? Is the existing wastewater treatment process effectively removing emerging microbial pollutants? Are natural, low-cost biocidal strategies suitable for use to tackle emerging microbial contaminants? Are anaerobic membrane bioreactors (MBR) a safe and sustainable technology to be used in a decentralised manner?

Combating microbial contaminants

This year, her research team carried out tests on Jeddah’s metropolitan wastewater system. The idea behind the study was to see if the current wastewater processes available in the Kingdom could remove potential harmful pathogens. The researchers also wanted to gain a clearer picture of the persistence levels and survival strategies of these microorganisms when they are subjected to a water purification process4,5.

“We believe we now have a clearer idea of what type of emerging microbial contaminants cannot be effectively removed by the existing wastewater treatment technologies. These contaminants remain to be present in the treated wastewater,” Hong noted.

“Most importantly, we have a clearer understanding of their fate and persistence, as well as the strategies adopted by these microorganisms to facilitate their survival through the treatment process. With this knowledge, we can improve our treatment technology or management practices to lower detrimental problems or risks associated with these contaminants during reuse events,” she added.

A vision for change

Although Saudi Arabia leads the way globally in terms of its desalinated water usage and facilities and is actively sharing its desalination knowledge, techniques and experiences of operating big-scale desalination plants with other nations, the water reuse rate in the Kingdom remains low. However, it is anticipated that the rate of water reuse will change in the future. Water reuse is within the country’s recent National Transformation Programme, Vision 2030. Hong firmly believes that because of the Vision 2030 initiative, various ministries in Saudi Arabia are now currently expanding research and development in regards to the use of treated wastewater with the end goal of increasing the current reuse rate.

“biocidal strategies can also be expanded and be used in other water sources; for example, in seawater”

“Water reuse is specifically stated in Vision 2030 for the country. The intention is to mitigate the depleting groundwater supplies by increasing the reuse rates. With this new drive, it is expected that technology developments related to wastewater treatment and reuse will become a national research priority,” Hong outlined.

“I think the government Ministries in Saudi Arabia recognise the benefits of treated wastewater, for example how it can (a) improve our water security, (b) decrease our use of non-renewable groundwater supplies and allow sufficient time for it to replenish, and (c) increase our ability to recover valuable resources from wastewater,” she added.

Hong is emphatic that she has seen a continued year-on-year improvement in water desalination and water reuse techniques since she first began her research. “In the past, these water reuse techniques have been just about recovering clean water for discharge. Technologies nowadays do not only focus on recovering clean water, but are also able to maximise recovery of other valuable resources from our wastewater – nutrients and energy,” Hong pronounced.

Collaborative multidisciplinary research

The team at KAUST also plans to enlarge its lab-sized bioreactor to treat the wastewater produced by the community living and working at KAUST. Hong and her group are hoping to use these scaled-up anaerobic membrane bioreactors as a decentralised wastewater treatment technology to treat the wastewater on-site.

“We are researching the potential impact of this treated wastewater on food safety. We are also collaborating with our plant sciences colleagues, Professor Ikram Blilou and her team, to examine the impact on crop yield and plant health. At the same time, we are coupling what we have learned about the emerging microbial contaminants and developing low-cost biocidal strategies to further inactivate these contaminants so as to enhance the safety of reuse water,” she said.

The aforementioned biocidal strategies can also be expanded and be used in other water sources; for example, in seawater.

“To better assess the water quality, we are also developing tools to provide faster and more accurate water quality testing, which we believe is essential to better protect public health,” Hong noted.

Along with her PhD student, Hong Cheng, Hong is also investigating biological fouling, or biofouling, and how it impacts water treatment research6. “Our research has highlighted the fact that existing wastewater treatment plants need to be retrofitted with better technology; for example, membrane filtration, to ensure substantial removal of contaminants.”

“One problem with membrane-based technologies, however, is biofouling. Biofouling depreciates the lifespan of the membrane and increases the operational costs. Many strategies exist to eradicate biofilm formation on it, and frankly, there is a limit to how much biofilm we can remove at the end of the day,” Hong said.

In this study, the team at KAUST adopted a change in the paradigm. Instead of being focused on eradicating the biofilm, they asked whether it is possible to let the biofilm grow to a certain level/ thickness, and then observe whether the biofilm was actually helping to achieve better water quality.

“Indeed, our study showed that biofouling can help remove contaminants from wastewater by functioning as a layer that adsorbs contaminants,” she added.

Wastewater = safe water

In the future, Hong would like to research the impact that climate change will play in global water scarcity.

“Climate change could exacerbate water scarcity, and we are going to see more events like extreme precipitation or prolonged drought that may further perturb water quality. We may need better surveillance technologies to monitor that,” she predicted.

Hong is of the opinion that water scarcity is not fully understood in some countries. “Take Saudi Arabia as an example; it is a highly water stressed country with non-renewable groundwater supplies. Yet, because water is a heavily subsidised commodity, people do not feel the need to conserve it.”

Water usage rates in Saudi Arabia remain high at 265 litres per person per day, and it is expected to increase each year.

“Until the problems related to water scarcity start impacting our day to day activities, water scarcity remains to be an environmental issue that is hard for people to fully understand,” Hong emphasised.

Hong believes that as a society, we already have treatment technologies that can convert wastewater into freshwater that is more pristine than some of the current groundwater supplies in use. However, she also believes that more outreach and education has to be done to change the perception people have towards treated wastewater for reuse.

“I think the “yuck” factor is still there even though the technology is already there to convert treated wastewater to clean water. We have to design our outreach programmes by showcasing the technologies we have, coupled with scientific findings related to these technologies to convince people that this treated wastewater is safe for reuse,” she said.

“Because most of the groundwater aquifers are heavily utilised, a lot of the remaining groundwater is of poor quality and may be contaminated. Yet the public thinks it is safe to use this groundwater for agricultural irrigation to produce the food they eat, but they do not use treated wastewater for this purpose. With science, education and outreach, we hope to convince people that with the right type of treatment technology and management practices, these waters are safe for reuse,” she concluded.

References

1/2/3. Drinking-water fact sheet; World Health Organization (2018) | Article.

4. Mantilla-Calderon, D., Jumat, R., Wang, T., Ganesan, P., Al-Jassim, N. & Hong, P.-Y. Isolation and characterization of NDM-positive Escherichia coli from municipal wastewater in Jeddah, Saudi Arabia. Antimicrobial Agents and Chemotherapy 60, 5223-5231 (2016). | Article.

5. Al-Jassim, N., Mantilla-Calderon, D., Wang, T. & Hong, P.-Y. Inactivation of a virulent wastewater Escherichia coli and non-virulent commensal Escherichia coli DSM1103 strains and their gene expression upon solar irradiation. Environmental Science and Technology 51, 3649-3659 (2017). | Article.

6. Cheng, H. & Hong, P. Removal of antibiotic-resistant bacteria and antibiotic resistance genes affected by varying degrees of fouling on anaerobic microfiltration membranes. Environmental Science & Technology 51, 21 12200–12209 (2017).| Article.

Share this article

ABOUT THE AUTHOR

David Murphy, King Abdullah University of Science and Technology (KAUST)

David Murphy is a writer with a BA in Journalism and a BA (Hons) degree in Journalism and Visual Media from Griffith College, Dublin, Ireland. He is currently a staff writer in the marketing communications department at the King Abdullah University of Science and Technology (KAUST). David focuses on creating written content for both traditional and online media channels.

Visit Website

POPULAR POSTS BY David Murphy, King Abdullah University of Science and Technology (KAUST)

Article

The Global Potential of Wastewater

Article

Disposable Lifesaving Sensors

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
20 Mar

📣WE HAVE AN EXCITING ANNOUNCEMENT📣

Want to find out the latest in gas detection? You won't want to miss this!

Launching this week our specialist gas summit, with
@HSIMagazine and @HSMEMagazine.

https://www.aweimagazine.com/webinars/accelerating-gas-detection-in-hse/

#aweinternational #GasDetectionSummit #gasdetection

Reply on Twitter 1637802450164805637 Retweet on Twitter 1637802450164805637 Like on Twitter 1637802450164805637 Twitter 1637802450164805637

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT