Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Article / Stationary Source Emissions

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Article / Stationary Source Emissions

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Article

Stationary Source Emissions

By David Graham

| Read Bio

Published: January 01st, 1970

Share this article

David Graham looks at the new standard on flue gas flow rate measurement which was published in 2013: EN ISO 16911 ‘Stationary Source Emissions – Manual and automatic determination of velocity and volume flow rate in ducts.

Operators of combustion plant need to know the flue gas flow rate in order to calculate the mass release of pollutant emissions. The flue gas flow rate (m 3 /s) is multiplied by the concentration (mg/m 3 ) of pollutant, e.g., NOx, to give the mass release rate in mg/s. This information may be required for emissions trading, compliance or inventory reporting, or for air quality modelling purposes.

A new standard on flue gas flow rate measurement was published in 2013: EN ISO 16911 ‘Stationary Source Emissions – Manual and automatic determination of velocity and volume flow rate in ducts. The scope of the standard, based on the original mandate from the European Union, is linked to the requirements of European Directives, including the Industrial Emissions Directive (IED) and the EU Emissions Trading System (EU ETS) which allow this alternative ‘measurement’ approach for CO2 and require it for emissions of N2O and CH4 from other sectors, all subject to defined uncertainty requirements. European Directives require the use of CEN standards when available.

The standard is divided into two parts. Part 1 defines manual Standard Reference Methods (SRM) to be used for the calibration of continuous stack flow monitors and for other compliance purposes, such as periodic testing. Part 2 of the standard applies to continuous monitoring and specifies the requirements for the certification, calibration and ongoing control of continuous flow monitors.

Part 1: Manual reference method

Part 1 of the standard is performance based, that is, a number of different techniques may be used as the manual reference method provided that the specified performance requirements are satisfied. The alternative techniques include: velocity traverses with Pitot probes (various designs) or vane anemometers; tracer (dilution) and tracer (time-of-flight) methods. Under certain circumstances, flow calculation from fuel consumption can be used to perform compliance checks and a mandatory calculation approach is also provided in Part 1 (Annex E).

Point velocity measurements are, evidently, required when measuring the velocity profile in order to determine if a given measurement plane is suitable for the installation of a flow monitor, for example. Any type of Pitot tube or vane anemometer with a traceable calibration can be used for this purpose, provided that the level of swirl is low (nominally less than 15° swirl angle at all traverse points). If the level of swirl is significant, then the traverse must be conducted using a 3D or 2D Pitot, noting that a conventional S-type Pitot can be operated as a 2D Pitot with measurement of the swirl angle. The 3D approach, as the name suggests, measures all three velocity components, including the axial velocity that is required for an unbiased flow rate determination.

The spherical (5-hole) Pitot, shown in Figure 1a, is an example of a 3D device. This is inserted into the flow and turned until one of the DP measurements is nulled. Wind tunnel calibration relationships are then used to calculate all three velocity components from the various measured DPs. The operation of 3D Pitots is described in detail in US EPA Method 2F.

The S-type Pitot, shown in Figure 1b, is commonly used to establish iso-kinetic sampling conditions when measuring dust concentrations. This is normally inserted into the flow so that the ‘impact’ orifice faces into the flow and the ‘wake’ orifice is then positioned at 180° to this. Operation as a 2D Pitot is described in detail in US EPA Method 2G. It should be noted that if a Pitot tube is used in a configuration with a closely coupled gas-sampling probe, then the device must be calibrated in this configuration.

For determining the average velocity, the traverse points are located at centres of equal area so that a simple average of the point readings gives an area weighted average in a duct of circular cross-section. The procedures for determining the required number and location of points are specified in EN15259, noting that the ‘tangential method’ is required by EN ISO 16911, in other words, the centre-line of the duct cannot be included. Twenty measurement points are normally sufficient in large ducts.

The field trial validation indicated that lack of uniformity of the flow profile (Figure 3) caused by a poor measurement location did not significantly affect the average velocity determination. That is, a 20 point average from a poor flow profile gave the same result as a 20 point average from a uniform flow profile.

Performance requirements and quality assurance requirements are specified for each technique. For Pitot tubes, a pre-test leak check is required and, when using an electronic pressure reading device, a daily calibration check is required using a liquid manometer device (temperature corrected) or a calibrated pressure sensor with an uncertainty better than the test device. The repeatability also needs to be determined at a single measurement point (the standard deviation of five consecutive one minute velocity readings). Each point velocity measurement must be obtained from a one minute average DP based on a continuous measurement or at least three separate readings.

A velocity traverse to EN 15259 does not have sufficient resolution to capture the very low velocity boundary layer at the duct wall. For a large duct, this can optionally be measured according to US EPA Method 2H. However, the correction is usually very small and it is normally sufficient to multiply the measured average velocity by a Wall Adjustment Factor of 0.995 for a smooth duct or 0.99 for a rough (brick-lined) duct of circular cross-section. This is a requirement when calibrating a flow monitor.

Tracer transit time methods determine the bulk (average) velocity directly by recording the time taken for a tracer material to travel between two measurements stations (Dt). The distance between these two stations, situated in duct work of constant cross section, is divided by the measured time-of-flight to obtain the average velocity. The example in the standard is based on the injection of a radioactive tracer, upstream of the flue. Two sets of clamp-on detectors are then used to detect the arrival of the tracer at two different heights within the flue. The medians of the recorded tracer concentration peaks are extracted so that the shape of the detector response is taken into account to obtain an accurate Dt.

In order to obtain the volumetric flow rate the average velocity must be multiplied by the duct’s cross-sectional area. EN ISO 16911 requires the test laboratory to measure the duct dimensions, across at least two axes, rather than simply relying on plant drawings.

The tracer dilution method directly determines the flue gas flow rate and does not, therefore, require the cross-sectional area to be known. A tracer is injected into the flue gas, for a short period of time, well upstream of the flue, so that the tracer is intimately mixed with the flue gas. The concentration of tracer in the flue gas is then measured. A one-off EN 15259 concentration traverse must be performed to demonstrate that the tracer is well mixed for the given injection configuration. Simple dilution relationships are then used to calculate the flue gas flow rate from the tracer injection flow rate and concentration.

If all of the above techniques are regarded as different implementations of the same method, the ensemble average uncertainty, based on validation field trials, is estimated to be ± 5% at 95% confidence, assuming that the flow is non-swirling. It is anticipated, however, that a lower uncertainty can be obtained using a specific technique in a given application. The test laboratory must calculate the uncertainty of the method, using the approaches described in the standard, and ensure that this complies with the requirements of the Test Objective.

Part 2: Automated measuring systems

Part 2 of the standard is also performance based, that is, provided that the specified performance requirements are satisfied, any continuous monitoring technique can be employed, e.g., single point or averaging Pitot tubes, hot wire or hot film sensors, point or cross-duct ultrasonic devices (Figure 4) or correlation (pattern matching) devices. However, it is recognised that the uniformity of the velocity profile at the monitoring location, and the stability of this profile with regard to plant operations, may affect the choice of flow monitor and how this is configured.

The standard, therefore, encourages a pre-investigation of the velocity profiles at the proposed monitoring location, based on point velocity measurements (see Part 1). For a new plant, this can be conducted using Computational Fluid Dynamics. The survey needs to be performed at the normal base load operating condition and the minimum stable operating condition.

Table 2 presents informative guidance to assist in the selection of a flow monitor. The profile is assessed by means of three parameters:

•  Reproducibility – the deviation in the normalised velocity profile shape between the minimum and maximum plant flow rates

•  Crest factor – the ratio of the maximum to average velocity

•  Skewness – the ratio of the average velocities either side of the duct centre-line

If a pre-investigation (velocity survey) is performed, the plant does not then have to operate at minimum load when the monitor is calibrated.

The Quality Assurance (QA) approach defined in the standard is based on EN 14181 which defines three Quality Assurance Levels (QALs). QAL1 requires that the instrument is fit for purpose and this is satisfied by an appropriate instrument certification. QAL2 requires in-situ calibration of the CEM using parallel test data obtained by an accredited test laboratory using Standard Reference Methods (SRMs) defined in Part 1. The calibration must also be checked annually by the test laboratory by means of an Annual Surveillance Test (AST). QAL3 requires the ongoing monitoring of instrument zero and span drift.

QAL1 defines additional certification requirements and emphasises the need to have an appropriate reference material, or surrogate approach, for checking the zero (or low level) and span (high level) instrument capability. For example, a Pitot tube would require the capability to check the DP measurement combined with procedures to ensure that the pressure tappings remain blockage free. The instrument configuration, and sensitivity to changes in flue gas conditions and velocity profile shape, must also be audited by the test laboratory during the certification field trial.

QAL2 defines the approach to be taken for in-situ calibration of the flow monitor. EN14181 employs Emission Limit Value (ELV) and an uncertainty level specified in the relevant European Directive when assessing the quality of the calibration. Since these parameters are not defined for flue gas flow rate, surrogate values are defined in the standard for the ELV (120% of the maximum measured value) and the uncertainty (so = 4%). Testing does not have to meet any particular time constraints, e.g., a QAL2 can potentially be conducted in one day, and the number and range of the measurement points can be reduced if a pre-investigation of the flow profile is conducted, as noted above. In addition to the usual variability (QAL2) and bias (AST) assessments, the quality of the linear regression between the test results and continuous monitoring results must be good (R 2 > 0.9).

Calculation of the flue gas flow rate from fuel consumption can be also employed for continuous monitoring purposes (according to Part 1 Annex E) subject to QAL2/AST verification.

QAL3 requires the usual control chart approach for the assessment of instrument drift using the internal reference points established under the QAL1 certification.

Concluding remarks

Applying this new standard to existing combustion plant poses a number of challenges relating to a) sample port provision and access, b) choice of manual test method and c) implementation of the QA requirements in a consistent and meaningful way. However, the standard provides a, long over-due, framework for improving the quality of flue gas flow rate monitoring for emissions reporting and other purposes.

Published: 14th Dec 2015 in AWE International

Share this article

ABOUT THE AUTHOR

David Graham

Visit Website

POPULAR POSTS BY David Graham

Article

Emissions and Air Quality

Article

Monitoring Requirements

Article

Industrial Emissions Directive Impact

Article

Stationary Source Emissions

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
20 Mar

📣WE HAVE AN EXCITING ANNOUNCEMENT📣

Want to find out the latest in gas detection? You won't want to miss this!

Launching this week our specialist gas summit, with
@HSIMagazine and @HSMEMagazine.

https://www.aweimagazine.com/webinars/accelerating-gas-detection-in-hse/

#aweinternational #GasDetectionSummit #gasdetection

Reply on Twitter 1637802450164805637 Retweet on Twitter 1637802450164805637 Like on Twitter 1637802450164805637 Twitter 1637802450164805637

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT