Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Article / Sailing on Solar

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Article / Sailing on Solar

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Article

Sailing on Solar

By Ricardo

| Read Bio

Published: October 06th, 2020

Share this article

Shipping is responsible for three percent of global CO2 emissions but has been slow to embrace technical change. Yet, says a new Ricardo report, there could be an answer in the shape of green ammonia.

With the world waking up to the global climate emergency, major industries are looking towards zero carbon emissions by 2050 or earlier. Shipping, responsible for between 2 and 3 percent of global greenhouse gas emissions, has been one of the slowest to be regulated and hence, to embrace technical change. Yet according to a new Ricardo report there could be an answer, in the surprising shape of ‘green’ ammonia.

The shipping industry, with its high investment costs and long replacement cycles for vessels and their engines, has traditionally been a slow mover when it comes to environmental initiatives. Recently, however, the International Maritime Organization has agreed to halve the sector’s greenhouse gas (GHG) emissions by 2050. The quantities are significant: if sea transport were a country, it would rank fifth in the world for GHG emissions, midway between Japan and Germany.

Decarbonised powertrains are at varying stages of development in almost every transport sector, with batteries, hydrogen and synthetic fuels all vying for advantage. But in shipping the route forward is less clear: battery power is currently inadequate for any but the shortest of ferry routes, and hydrogen has challenges due to infrastructure issues.

The liquefied natural gas fuel that has recently become more popular is helpful in avoiding the sulphur emissions of traditional heavy fuel oils and does slightly reduce CO2 impact thanks to the lower carbon content; however, truly climate-neutral synthetic fuels are still too expensive for this acutely cost-conscious sector and are not currently available.

 

One possibility gaining traction is carbon-free ‘green’ ammonia, and its potential is highlighted in a study published by Ricardo Energy & Environment in spring 2019 on behalf of the Environmental Defense Fund, a leading international non-profit organisation addressing environmental problems. The report, entitled Sailing on Solar: Could green ammonia decarbonize international shipping? builds a strong case for ammonia as a fuel which could not only decarbonise maritime transport but also help boost the economies of developing nations. The connection might appear obscure but, as we explain below, it could make perfect sense.

Ammonia as a green fuel

On the face of it, using green ammonia as a marine fuel ticks a great many boxes. The lifecycle of green ammonia is climate neutral if it is generated using carbon-free energy, and the fuel can be used in existing marine diesel engines with some modifications to the powerplant and fuel storage systems. There is a potential for the same fuel to be used later in fuel cell equipped vessels.

Ammonia is a known compound in industry. It is widely used in transport as a reductant, stored as AdBlue for use in the selective catalytic reduction (SCR) systems employed to reduce NOx from diesel exhausts. Despite its corrosiveness, ammonia is in general easier to store than hydrogen and does not require cryogenic freezing.

More compellingly still, is that ammonia is produced using renewable electricity, the whole fuel value chain becomes fully climate neutral. Abundant solar irradiation in many developing countries in the equatorial belt and southern hemisphere gives them the potential to set up green ammonia plants as part of extended solar farms. These could provide sustained demand for renewable energy and thus help the region or nation reach the critical mass required to increase the contribution from renewables in their energy mix. And that in its turn could help displace existing GHG-intense sources of generation, further reducing aggregate global GHG emissions.

In the Sailing on Solar report, experts from Ricardo Energy & Environment have detailed some case studies of possible installations, each of them close to busy shipping routes so as to allow easy refuelling of vessels and loading of bulk ammonia carriers. Among the locations examined are Morocco, Greece and Chile.

“in the green ammonia process, renewable electricity powers electrolysers that split water into its constituents of hydrogen and oxygen; the hydrogen is then stored ready for the next process”

How is green ammonia produced?

Ammonia (NH3) is a compound of hydrogen and nitrogen, and in conventional industrial methods the hydrogen is ‘reformed’ from carbon-based feedstocks like natural gas, oil or coal. In the green ammonia process, renewable electricity powers electrolysers that split water into its constituents of hydrogen and oxygen; the hydrogen is then stored ready for the next process, which sees it combined with nitrogen harvested from the air using an air separation unit, again a familiar technology.

The electrolyser plants for green ammonia production are made up of multiple modular units that can operate at low loads and can be stopped or started easily, says the report. These characteristics give them high operational flexibility, which is well suited to renewable electricity with fluctuating output.

The Haber-Bosch process for turning the hydrogen and nitrogen into ammonia is also an established one. The technique involves an exothermic reaction (one that creates heat) that works best when it continues uninterrupted, explains the report, but it is possible to design a Haber-Bosch plant with the ability to operate more flexibly and to reduce the load at times of lower electricity output from intermittent renewable sources. In terms of energy demand (excluding the desalination plant that provides the pure water), the electrolyser absorbs some 92 percent of the total, with the Haber-Bosch synthesis accounting for just 6 percent.

“the central advantage of using ammonia in any combustion application is that it contains no carbon atoms, so the fuel itself does not give rise to any carbon emissions”

Buffer storage tanks for both hydrogen and nitrogen allow the system to absorb surplus electricity supply, as well as enabling the process to continue even when renewable generation is low. In fact, says Nick Ash, one of the report’s authors, the electricity supply could drop by more than 92 percent and the Haber-Bosch process could continue operation near full load.

“ammonia can be kept under pressure at around 10 bar, or refrigerated to -33°C”

Green ammonia on board ship The central advantage of using ammonia in any combustion application is that it contains no carbon atoms, so the fuel itself does not give rise to any carbon emissions. The harmful sulphur and heavy metal emissions associated with heavy oil bunker fuels are avoided too.

With large diesel engines running on heavy fuel oil being so dominant in the shipping sector, these engines would be the natural entry point for the new marine fuel. Yet the report identifies three further potential shipboard applications: firstly, indirect use as a hydrogen carrier for a hydrogen fuel cell system; secondly, to react chemically in a solid oxide fuel cell system; and finally, and perhaps least promisingly, for direct combustion in gas turbines – as used in some military ships.

As always, the substitution of the new fuel may not be quite as simple as plug and play. Because ammonia can be difficult to combust, especially at low loads and/or speeds, a support fuel (probably a fossil fuel or hydrogen) will likely be needed to ensure smooth operation. And given the corrosive nature of ammonia, the main fuel storage and supply system would have to leak free and avoid certain materials such as copper, brass and zinc alloys, as well as rubber and some plastics.

The storage of ammonia is much less problematic than hydrogen, the only other current contender as a carbon-free fuel: ammonia can be kept under pressure at around 10 bar, or refrigerated to -33°C, though it is much less energy-dense than heavy fuel oil and occupies roughly four times the space of a fossil fuel tank giving the same range.

Emissions profile

Combustion of ammonia either under stoichiometric or lean conditions can form NOx, notes Matthew Keenan, aftertreatment and chemistry technical specialist at Ricardo’s Shoreham Technical Centre. “NOx emissions are formed in the combustion process under high temperatures, above approximately 2000 K,” he explains. “This can be controlled, to an extent, by optimising the engine operating conditions, and additional NOx control will be achieved through the application of an SCR-based aftertreatment system.”

“combustion of ammonia either under stoichiometric or lean conditions can form NOx”

Spark-ignition stoichiometric NH3 combustion will have higher NOx emissions compared to lean compression-ignition and lean spark-ignition NH3 combustion owing to the higher peak combustion temperatures.

The aftertreatment is likely to be an SCR system, broadly similar to those already in use on many lean combustion engines. And no separate AdBlue supply will be needed as the reductant is contained in the principal fuel; even so, the aftertreatment and reductant supply may impact a vessel’s payload and packaging.

“the aftertreatment is likely to be an SCR system, broadly similar to those already in use on many lean combustion engines”

As for particulate matter (PM), so long the bane of the diesel engine, the Ricardo engine performance development department cautions that PM emissions can still be expected from NH3-fuelled engines. However, NH3 is expected to result in a much less visible emissions signature, with reduced black smoke. As with diesel engines, the lubricating oil will contribute to PM emissions, along with any hydrocarbon-based fuel used as a combustion enhancer.

Also, signal the specialists, the NH3 fuel itself may form solid nitrates which will contribute to PM emissions. Appropriate after treatment filtration systems may be required to minimise particulate matter.

Timescales

The urgency of the global climate crisis and the slow pace of upgrades and replacements in the marine sector mean that low-carbon shipping needs to begin feeding into international fleets within the next five years, if not earlier. As ships have a typical lifespan of 20 to 30 years, it is important to act soon.

“the urgency of the global climate crisis and the slow pace of upgrades and replacements in the marine sector mean that low-carbon shipping needs to begin feeding into international fleets within the next five years”

MAN, a leading manufacturer of marine engines, is planning to develop one of its engine models to run on ammonia, targeting brake thermal efficiency in the region of 50 percent, notes the report. Furthermore, MAN also indicated that up to 3,000 existing engines could be retrofitted to run on ammonia. It is not clear from MAN’s plans whether their approach is compression- or spark-ignited. The firm anticipates that a relatively short timeframe of two to three years would be required to develop and test its engine for ammonia combustion, which indicates that it is technically achievable to have new and retrofitted existing vessels with ammonia-operated engines in the next decade.

“MAN, a leading manufacturer of marine engines, is planning to develop one of its engine models to run on ammonia, targeting brake thermal efficiency in the region of 50 percent”

Outlook

Green ammonia, concludes the report, is a technically feasible solution for decarbonising international shipping, even though there are many development steps required prior to its introduction. It is a fuel that can be combusted in engines and potentially used for fuel cells in the future. The pathway to its deployment can begin using technologies familiar to the maritime sector: diesel or dual-fuel engines in new and existing vessels.
But to make a success of this pathway, what is needed is certainty – both for the marine industry in building and retrofitting such vessels, as well for a green ammonia supply industry to manufacture at scale.

This must be provided by strategic and policy measures adopted by the International Maritime Organization. This would encourage green ammonia and vessels that can accommodate it to be introduced within the timescales required to achieve the IMO’s decarbonization targets.

What is more, demand from shipping could unlock investment in the green ammonia supply chain, including low-carbon industry and renewable electricity. This represents a unique opportunity for sustainable economic development and distribution of bunkering infrastructure around the world – especially for developing economies rich in renewable energy potential.

Ammonia in other engines

Thanks to its hydrogen content, ammonia can operate in a variety of different combustion engines and energy conversion devices. As well as conventional reciprocating piston engines, ammonia can also be burned in gas turbines. However, its lower energy density than conventional jet fuel rules it out for long- and even medium-haul aviation applications. For the same reason, it is not a suitable road fuel but, says Ricardo, NH3 has the potential to be a viable fuel for stationary power. Fuel cell applications are still under study, and initial indications are that ammonia could operate equally well in both PEM fuel cells, with their higher precious metal content, and in solid oxide fuel cells which run at high temperatures. In both cases, ammonia could offer advantages over hydrogen, which has to be stored under much higher pressure.

Share this article

ABOUT THE AUTHOR

Ricardo

Ricardo is a global strategic engineering and environmental consultancy that specialises in the transport, energy and scarce resources sectors.
Our work extends across a range of market sectors – including passenger cars, commercial vehicles, rail, defence, motorsport, energy and environment – and we are proud to possess a client list that includes transport operators, manufacturers, energy companies, financial institutions and government agencies. Across everything we do, in every assignment we undertake, we remain committed to the ethos of our founder, Sir Harry Ricardo, one of the most innovative engineers of his time, who in 1915 set out on a mission to ‘maximise efficiency and eliminate waste’.
www.ricardo.com

Visit Website

POPULAR POSTS BY Ricardo

The Promised Land

Article

The Promised Land

Article

Keeping Emissions on Track

Article

Decarbonisation Through Hydrogen

Article

Sailing on Solar

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
25 Jan

Soil is a vital component of natural capital, hosting rich biodiversity and providing critical ecosystem services, such as food production, water purification and carbon storage.

Read more from the @EUEnvironment here:
https://www.aweimagazine.com/press-release/monitoring-soil-threats-in-europe/

#aweinternational #EEA #soil

Reply on Twitter 1618284319327543296 Retweet on Twitter 1618284319327543296 Like on Twitter 1618284319327543296 Twitter 1618284319327543296

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT