Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Article / Mass Spectrometry Imaging

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Article / Mass Spectrometry Imaging

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Article

Mass Spectrometry Imaging

By Professor Joesphine Bunch and Professor Ian Gilmore, NPL

| Read Bio

Published: February 23rd, 2021

Share this article

Mass spectrometry is a powerful tool for elemental, molecular and isotopic analysis which can be used to amass huge amounts of detail about biological, materials and agricultural samples. The technique can be applied to various research fields. This helps us to understand the make-up of cancer tumours, locate and quantify nuclear materials, and investigate advanced materials.

The National Physical Laboratory (NPL) is home to the National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI), which aims to advance the development, understanding and application of the principal mass spectrometry imaging techniques.

Mass spectroscopy can be used to take a sample, separate each molecule that makes up that sample, and then provide the data that allow each of those molecules to be identified and quantified. We use mass spectrometry imaging (MSI) to uncover new spatially-resolved information about the molecular and isotopic composition of biological and inorganic materials in unprecedented detail.

Mass Spectrometry Imaging

NPL is developing world-leading mass spectrometry technologies and the standards for best practice that can be rolled out across the world. We are also developing and applying the latest machine learning techniques to visualise and interpret mass spectrometry data.

MSI (Mass Spectrometry Imaging) is commonly used to investigate the response of drugs in the body, the composition of proteins, the distribution of trace and ultralight elements (e.g.: H, Li) in advanced materials. This is helping us reveal the relationship between genetics and metabolism in cancers through use of stable isotope tracers, the pharmacokinetics of drug formulations and informs the next generation of battery and advanced materials.

Building a ‘Google Earth’ of cancer

NPL is leading a group of international and multidisciplinary chemists, physicists and biologists from the UK as part of a Cancer Research UK Grand Challenge to solve some of the biggest challenges in cancer research. The Rosetta team are developing a reproducible, standardised way to fully map tumours with extraordinary precision.

In the same way cartographers build maps of cities and countries to help people get around, scientists build maps of tumours to better understand their inner workings. But despite significant advances in technology and our understanding of cancer, our tumour maps remain incomplete. What’s missing is our ability to see down to the very core of cancer cells and understand how changes in their metabolism can impact their overall state and function within a tumour. No one has ever mapped tumours in this level of detail before – until now.

“the Rosetta team are developing a reproducible, standardised way to fully map tumours with extraordinary precision”

In mass spectroscopy, the molecules from a thin tissue section are analysed by scanning an ion beam, a laser, or a solvent spray, across the surface of the sample, ionising the molecules and transferring them to a mass spectrometer where the molecular weight and identity of the molecule is determined. The vast data obtained are reconstructed into spatially resolved maps of molecules from the tumour.

Using the mass spectrometer, we’re able to measure thousands of different molecules that are coming from the tissue. Cancer and associated tissues are extremely complex and in order to have new impact on making sure we can find out what treatment is best for a patient and design new drugs that work properly, we need to understand all of the changes that can occur.

Mass Spectrometry Imaging

The technology used within the Rosetta project allows us to understand how cancer works and by doing this we can spot and diagnose cancer earlier, arrange for more dedicated treatment and ultimately help CRUK in the fight to reduce the number of people who suffer from this disease.

Within the first year of the project the team successfully developed an imaging pipeline that produces an ultra-high resolution picture of the metabolism of tumours – allowing the team to map the distribution of cancer drugs within a tumour, as well as changes in cell metabolism.

More recently the Rosetta consortium has been researching colorectal cancer. The team have studied a particular and common genetic subtype of colon cancer, using well defined genetically engineered models and our metabolic imaging approaches, including mass spectrometry. This research resulted in the discovery of important mechanisms which help us understand how this type of cancer is able to grow. Importantly, these mechanisms identified also provide new ideas about how to treat this type of cancer. This research has been published in Nature Genetics.

Enabling immediate decision making in surgery

The NHS has set a target to provide high quality care and better outcomes to patients using innovations in the field of medical engineering and sciences within the next 10 years and beyond. Automated decision-making tools will be routinely used by surgeons in the operating theatre, as well as medical laboratory staff, allowing for safer surgeries, improved clinical diagnosis and treatment and at a reduced cost.

Ambient ionisation mass spectrometry is an example of such innovations, and has shown its suitability in the prevention, prediction, and diagnosis of disease. Use of innovative ambient ionisation mass spectrometry tools have already successfully been used in real time biomarker phenotyping of colon polyps, as well as in ex-vivo applications such as microbiology, drug screening and cell culture typing. One such potential tool is an innovative mass spectrometry method based on Rapid Evaporative Ionisation Mass Spectrometry (REIMS), pioneered by Zoltan Takats of Imperial College London, that uses a mass spectrometer to analyse the aerosol generated by the vaporisation of cellular material using electrosurgical tools. This smoke has been shown to contain a plethora of molecular information that can been used in near real-time for accurate tissue/cell classification.

“the introduction of lasers can greatly reduce measurement variability whilst also allowing for REIMS based ex-vivo mass spectrometry imaging”

Through collaborations with stakeholders and experts in the field, we have identified sources of measurement variability in electrosurgical based REIMS. Advancements and modifications in the sampling devices have now led to the use of medical and non-medical lasers to replace electrosurgical tools. The introduction of lasers can greatly reduce measurement variability whilst also allowing for REIMS based ex-vivo mass spectrometry imaging. NPL has supported partners at Imperial College London in the design and development of a highly flexible dedicated metrology mass spectrometry imaging stage for laser-based REIMS, allowing the analysis of preserved as well as fresh tissue samples.

Providing new insights

It costs approximately £1.4 billion to produce a new medicine, but this could be reduced if candidates that fail at late stage were identified earlier. Currently, one of the major challenges is to measure the intracellular drug concentration to help answer long-standing questions about whether drug concentrations are sufficiently high in the right places to have a therapeutic effect, or if the medicine is lodging within cellular components and causing toxicity. If anomalies were spotted earlier, it might help to explain toxicities or lack of efficacy of a medicine and reduce costly late-stage failures.

To do this, NPL led a multidisciplinary team including experts in drug discovery at GSK with leading mass spectrometry companies to develop the OrbiSIMS. The instrument combines the high-spatial resolution imaging of secondary ion mass spectrometry (SIMS) with the high-mass resolution of an Orbitrap mass spectrometer, achieving unprecedented chemical and spatial resolution. Such high performance is essential to reveal the biomolecular complexity in a single cell. Using the OrbiSIMS, they have revealed hitherto unknown wide variation in drug uptake between “identical” cells and that, cell-by-cell, the drug accumulation correlates with up-regulation of specific metabolites.

Recently, NPL introduced the Cryo-OrbiSIMS which allows highresolution imaging of biological samples in their native hydrated state. In a collaboration with the Francis Crick Institute (Alex Gould, Physiology and Metabolism Laboratory), they have published a paper in the journal Angewandte Chemie showing that the new cryogenic technique increases the range of different biomolecules that can be imaged, including semi-volatiles. As a proof-of-principle they imaged lipids and other molecules in human fingerprints, plant leaves and also in a popular genetic model organism, the fruit fly, Drosophila.

Now commercialised instruments in Europe and Asia are demonstrating a diverse range of impact including: label-free imaging of proteins in tissue, fundamental lipidomic studies of bone homeostasis, resolving chemistry in compound semiconductors previously confounded by lower resolution mass spectrometers, identification of deposits in fuel injectors and identification of degradation products in organic electronics.

As the UK’s National Metrology Institute, NPL plays a leading role in maintaining the UK’s position as a world leader in translating life sciences research, accelerating access to new diagnosis and treatment techniques, and helping to support rapid adoption of advanced healthcare technologies across the country and with global impact.

Mass Spectrometry Imaging

NPL’s research into understanding and application of the principal mass spectrometry imaging techniques is vital to the success of the projects previously mentioned. Mass spectrometry imaging methods include a suite of techniques for analysis of small and large molecules, at scales spanning the nano scale to bulk and in vivo surgical measurements. Uptake of the techniques by academia and industry continues to grow, with new applications areas emerging each year.

“recently, NPL introduced the Cryo-OrbiSIMS which allows highresolution imaging of biological samples in their native hydrated state”

Complex phenomena in the desorption ionisation process require ongoing research and metrology to ensure reproducible, quantitative, rapid measurements of molecules from complex samples. NPL are leading metrology programmes in each of the key techniques to address this and to continue to support innovators, developers and users of the techniques.

Share this article

ABOUT THE AUTHOR

Professor Joesphine Bunch and Professor Ian Gilmore, NPL

Authors
Professor Josephine Bunch
Professor Josephine Bunch is an NPL Fellow in Biomolecular Analysis, and Co-Director of the National Centre of Excellence in Mass Spectrometry Imaging (NiCE-MSI) at NPL and Chair of Biomolecular Mass Spectrometry at Imperial College London.
Professor Ian Gilmore
Professor Ian Gilmore is Head of Science at NPL, Senior NPL Fellow and a Visiting Professor in the School of Pharmacy at the University of Nottingham. He is founding director of the UK’s National Centre of Excellence in Mass Spectrometry (NiCE-MSI).

About NPL
NPL is the UK’s National Metrology Institute, developing and maintaining the national primary measurement standards. It is a Public Corporation owned by the Department of Business, Energy and Industrial Strategy (BEIS). It has a partnering agreement with BEIS and the University of Strathclyde and the University of Surrey. NPL is part of the
National Measurement System (NMS) which provides the UK with a national measurement infrastructure and delivers the UK Measurement Strategy on behalf of BEIS.
We undertake excellent science and engineering to deliver extraordinary impact for the UK and provide the measurement capability that underpins the UK’s prosperity and quality of life. From accelerating new antibiotics and more effective cancer treatments to developing unhackable quantum communications and superfast 5G, our expertise is crucial in researching, developing and testing new products and processes.
Metrology is the science of measurement. As the UK’s National Metrology Institute (NMI), NPL’s mission is to provide the measurement capability that underpins the UK’s prosperity and quality of life. We are able to provide confidence in measurement results and data traceable to SI units.
Since 1900 we have developed and maintained the nation’s primary measurement standards. These standards help provide confidence that the goods and services we buy live up to their claims, that the medicines we take are the right dosage, and the data we use for everything from climate change to financial trading is accurate. Our work also supports international trade and innovation in the commercial world.
UK measurement standards are underpinned by the National Measurement System (NMS), an infrastructure that ensures accuracy and consistency of measurement throughout the UK. We also represent the nation when liaising with international metrology and standards organisations and NMIs from other countries. We have over a century of experience meeting the requirements of the international measurement community.
NPL led the review of the UK’s national measurement capability in 2017. It looked at the UK’s measurement infrastructure and how measurement knowledge can give industry a competitive advantage. The results are published in the UK Measurement Strategy and The Value of Measurement: Supporting Information for the UK Measurement Strategy.

POPULAR POSTS BY Professor Joesphine Bunch and Professor Ian Gilmore, NPL

Article

Mass Spectrometry Imaging

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
19h

At Lovibond® we have understood the importance of water for a long time, and since World Water Day and its motto “The Value of Water” it has become clear: we are living in the middle of a global water crisis.
https://lnkd.in/eB8FAFdc

#aweinternational #lovibond #tintometer #water

Reply on Twitter 1622543763917750273 Retweet on Twitter 1622543763917750273 Like on Twitter 1622543763917750273 Twitter 1622543763917750273

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT