Open AWE Magazine menu
Subscribe Login

Home / Articles and Press Releases / Article / Emerging Pollutant Emissions to Water

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact
HSI White logo
Open AWE Magazine menu
Subscribe

Home / Articles and Press Releases / Article / Emerging Pollutant Emissions to Water

CATEGORIES

  • Latest Issue
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring

MORE

  • Press Releases
  • Events
  • Videos
  • Magazines
  • Webinar Sign Up

COMPANY

  • About
  • Advertising
  • Newsletter
  • Contact

CATEGORIES

  • Heat and Flame
  • Press Release|Gas Detection
  • Article
  • Press Release
  • Air Quality
  • Chromatography
  • Construction
  • Climate Change
  • Emissions
  • Environmental & Monitoring Technology
  • Gas Detection
  • Health and Safety Awareness
  • Humidity & Temperature
  • Laboratory Testing
  • Land Remediation
  • Marine Pollution
  • Noise Monitoring
  • Personal Protective Equipment
  • Regulations & Legislations
  • Sludge and Biosolids
  • Soil Analysis
  • Spectroscopy
  • Weather Monitoring
  • Water Analysis
  • Water Monitoring
  • Wellbeing at work

Article

Emerging Pollutant Emissions to Water

By Dr Claire Stone

| Read Bio

Published: May 29th, 2019

Share this article

It was in 2008 that the European Parliament and Council first published the Environmental Quality Standards Directive. This publication lays down environmental quality standards (EQS) for priority substances and certain other pollutants as provided for in Article 16 of the Water Framework Directive 2008/105/EC (WFD), with the aim of achieving good surface water chemical status and in accordance with the provisions and objectives detailed in the Directive.

As a European wide directive, each member state has a plan for assessing their water bodies and to achieve compliance with the concentrations (annual average and maximum) set out in the document. Annual average (AA) EQS and maximum allowable concentrations (MAC) EQS protect against long-term exposure and short-term peak concentrations, respectively, and are listed in Annex I to the Directive. For any given surface water body, applying the MACEQS means that the measured concentration at any representative monitoring point within the water body does not exceed the standard.

Originally the directive listed 36 priority substances and other pollutants (or groups of pollutants), however in 2013 the directive was revised again with further pollutants added to the list and changes made to the annual average and maximum pollutant concentrations.

“changes to the Environmental Quality Standards directive are causing considerable challenges to the environmental testing laboratory sector”

Revisions to the guidelines add pollutants to the lists of designated chemicals which are either not commonly tested for or where the concentration levels permitted (and thus to be measured) are considerably lower than most current standard laboratory detection levels. As a consequence, changes to the directive are causing considerable challenges to the environmental testing laboratory sector. Of note is that the revisions to the directive apply from 2015 through to 2021 and new pollutants apply from 2018, and in some cases these only apply if analytical techniques exist to support the EQS levels set out in the directive. Each member state is also required to instigate a “watch list” to monitor the occurrence of emerging pollutants, the aim being to report back to REACH and other source control regulators to ensure necessary additional measures are put in place to reduce pollutant release where possible, within the UK this is called the “Chemical Investigation Programme”.

A review of the watch list was carried out in 2018 and five substances were removed from the watch list; however further compounds were added: 17-Alpha-ethinylestradiol (EE2), 17-Beta-estradiol (E2), estrone (E1), Macrolide antibiotics (erythromycin, clarithromycin, azithromycin), Methiocarb, Neonicotinoids (imidacloprid, thiacloprid, thiamethoxam, clothianidin, acetamiprid), Metaflumizone, Amoxicillin and Ciprofloxacin.

Many of these compounds reach water bodies through the waste water treatment process; such as the antibiotics and estrone and estradiol compounds. Care therefore needs to be given to monitoring these processes for effectiveness and subsequent emissions of these compounds into surface waters.

Analytically, the compounds listed in Annex I to the Directive are generally most challenging to determine in complex matrices at low concentrations; in addition to those new compounds flagged on the 2018 watch list revision. For these we need to turn to chromatographic techniques for their analysis.

Monitoring Maximum Allowable Concentrations

Annex I to the 2008/105/EC Directive lists MAC (Maximum Allowable Concentrations) for approximately a third of the substances of interest. Considering compounds amenable to chromatographic analysis, the list reduces to the following compounds:

  • Alachlor
  • Anthracene
  • Atrazine
  • Benzene
  • C10-C13 Chloroalkanes
  • Chlorfenvinphos
  • Chlorpyrifos
  • Diuron
  • Endosulfan
  • Fluoranthene
  • Hexachlorobenzene
  • Hexachlorbutadiene
  • Hexachlorocyclohexane
  • Isoproturon
  • 4-Nonylphenol
  • Pentachlorophenol
  • Benzo(a)pyrene
  • Simazine
  • Tributytin compounds

Polyaromatic hydrocarbons

To highlight the differences and challenges in analysing compounds within this Directive, polyaromatic hydrocarbon (PAH) compounds can be easily compared and contrasted.

Anthracene (C14H10) is a PAH with a relatively low solubility in water of 44 µg/l. It is a component of coal tar and has been widely used as a wood preservative, in insecticides and as a coating material. It is not a known carcinogen. It has a relatively high EQS level of 0.1 µg/l compared with that of benzo(a)pyrene.

Benzo (a)pyrene is a group 1 carcinogen with mutagenic and highly carcinogenic metabolite. It is also found as a component of coal tar and is released into the environment typically through combustion. It is sparingly soluble in water with a solubility between 0.2 – 6.2 µg/l.

Both of these compounds are commonly tested for, with the most widely used technique being gas chromatography – mass spectroscopy (GC-MS). The compounds are extracted from the water by either liquid/liquid or solid phase extraction and the resulting solvent is injected into the GC-MS. Typical reporting limits are around 0.01 µg/l. For both compounds this is within the range of interest for the MAC and the EQS level for anthracene; however it’s clearly not suitable for the analysis of benzo(a)pyrene at the EQS level.

“the EQS level for benzo(a)pyrene is around 50 x lower than the standard reporting limit, and this calls for more advanced extraction and analysis techniques”

The EQS level for benzo(a)pyrene is around 50 x lower than the standard reporting limit, and this calls for more advanced extraction and analysis techniques. As these compounds lend themselves to liquid / liquid or solid phase extraction techniques, the sample can be “preconcentrated” by using a larger volume of sample, however this would typically require the handling of samples in excess of 25 litres in size which is not practical from either the sampling perspective or during preparation at the laboratory. The resulting solvent could then be concentrated to a smaller volume and analysed by a more sensitive technique such as GC-MS/MS. Much as this sounds relatively straightforward and a combination of the two renders this reporting limit feasible, consideration has to be given to sample concentration steps as by concentrating the analyte, the concentration of background and interference signals may also increase. Also, instrumental resolution and peak shift may be problematic, notwithstanding the challenge of finding environmental matrices with a sufficiently low pollutant level in order to validate the method and prove the detection and/or reporting limit.

Hexachlorocyclohexanes

Hexachlorocyclohexanes are all insecticides, the α- and β- forms being by-products from the formulation and production of Lindane. Lindane is a broad spectrum insecticide used to treat both soils and seeds. It bioconcentrates rapidly and is prone to long range transport. These compounds are particularly persistent in colder regions of the world; bioaccumulating and biomagnifiying in Arctic food webs. They are all classified as potential human carcinogens.

The MAC concentration is not analytically challenging and the EQS level is only 10 fold lower and as such we can turn to routine chromatographic methods for the detection of these isomers, however powerful modern deconvolution software aids detection when such chemically similar compounds are present in mixtures.

New watch list compounds

Compounds added to the watch list prove to be analytically challenging. These compounds make their way on to the watch list through being determined and quantified in a range of water bodies and/or at discharge points to water bodies (water treatment works); and as such methods do exist; however often a great deal of care needs to be taken in performing the analysis.

Steroids

Estrone (E1), 17β estradiol (E2), and 17α ethinylestradiol (EE2); also known as synthetic oestrogenics and make their way into water bodies as they may not be broken down in the body and as such may pass through the water treatment facilities unchanged.

For analysis the compounds need to be concentrated and derivatised to enable final analysis and detection by liquid chromatography with mass spectral detection. Due to the complex nature of the analysis it is necessary to use MS/MS technology to effectively eliminate interferences and generate a clear response. A key area to consider in this process is laboratory and personnel background – including those involved in the sampling process.

Antibiotics

Macrolide antibiotics (erythromycin, clarithromycin, azithromycin) appeared on the list of compounds of interest as they are used extensively and a significant portion of these may pass through the body without being metabolised.

“with the European Water Framework directive being revised every two years and each member state setting a programme of “chemical investigation” this legislation is constantly evolving”

The analysis of these compounds is complex, and their metabolites are often detected along with the compounds themselves. They are best analysed by LC-MS/MS; employing the MS/MS technology to effectively select the ions of interest for each chromatographic separation obtained by liquid chromatography. With this set up it is possible to achieve an analytical range of 10 – 1000 ng/L; which is in the range of expected concentrations given in the watch list review of 2018.

Analytical innovation?

The original EQS (2008) supporting documentation does give some guidance on standard analytical methods which may be employed for the analysis of pollutants however, even at this time it was acknowledged that standard methods may not meet the required levels and since 2013 most of the EQS levels have been revised to lower values. EQS levels are largely derived from ecological and human toxicology data and as such are not necessarily representative of what existing laboratory techniques are able to deliver, hence the setting of an EQS is a key driver in the innovation cycle for new and improved techniques.

Within the remit of the directive, often new pollutants are identified, and thus a new EQS set and the cycle continues. With the European Water Framework directive being revised every two years and each member state setting a programme of “chemical investigation” this legislation is constantly evolving and it can only be hoped that analytical techniques and capabilities are able to keep up with the rate of change. As these changes come through; more complex analytes are likely to have maximum allowable concentrations set and in turn ultra low environmental quality standards are likely to be set.

Share this article

ABOUT THE AUTHOR

Dr Claire Stone

Dr Claire Stone is the Quality Manager for i2 Analytical Ltd. She has a PhD in Analytical Chemistry with specific expertise in inorganic analysis in the biomedical, oil and environmental industries. She uses her knowledge of these fields to bring scientific and technical support to customers and train staff at i2 laboratories. Claire has worked for i2 Analytical in a variety of technical roles prior to being appointed Quality Manager, holding the role since 2010, and has been instrumental in the development of specialist testing methods offered by the laboratory. 
Claire represents i2 Analytical at the Environmental Industries Commission laboratory working group, and has contributed technical seminars to both the Society of Brownfield Risk Assessment and Contaminated Land Forum workshops. Claire is a member of the Standing Committee of Analysts (SCA) which develops industry standard methods for environmental analysis techniques. As a member of the Royal Society of Chemistry, Claire is involved in the RSC outreach programme, working with schools and youth organisations leading and supporting science activities.
About i2 Analytical
Founded in 2003, i2 Analytical Ltd is one of Europe’s leading independent environmental testing companies providing its customers a comprehensive range of analytical, monitoring and technical support services. i2 Analytical performs a full range of chemical analyses using state of the art laboratory techniques on air samples, soils, waters and building and waste materials. From a network of ISO 17025 and MCERTS accredited testing laboratories in the UK and Poland, we offer a rapid, efficient and reliable approach to a range of diverse sectors including environmental, geotechnical and construction.

Visit Website

POPULAR POSTS BY Dr Claire Stone

Environmental Soil Testing

Article

Environmental Soil Testing

Analysing Asbestos

Article

Analysing Asbestos

Article

Soil Testing Metals Analysis

Article

Forever Chemicals

Article

Under the Microscope

Article

Emerging Pollutant Emissions to Water

Get email updates

Sign up for the AWE newsletter

Keep up-to-date through the power of email and receive the latest environmental monitoring product information and newsletter emails from AWE - Monitoring and Analysing the Impact of Industry on the Environment

"*" indicates required fields

Country
*
This field is for validation purposes and should be left unchanged.

FEATURED ARTICLES

Press Release

Blackline Safety and NevadaNano Reach Milestone in Deployment of Industry-First Sensors

Press Release

The Benefits of Using Refurbished Parts in Your Lab

Advertisement

SOCIAL MEDIA

AWE on Facebook

https://www.facebook.com/AWEIMagazine/

Advertisement

SOCIAL MEDIA

AWE on Twitter

Avatar AWE International Magazine @aweimagazine ·
5h

Alphasense has increased its production capacity, automated elements of calibration and upgraded software for its OPC products to meet rising industry demand.

Find out more today:
https://www.aweimagazine.com/press-release/increased-demand-for-air-quality-improvements-leads-to-investment-in-alphasense-opc-production/

#aweinternational #alphasense #particlecounter #OPC

Reply on Twitter 1641389929895788547 Retweet on Twitter 1641389929895788547 Like on Twitter 1641389929895788547 Twitter 1641389929895788547

Advertisement

SUBSCRIBE

Stay up to date with our newsletter

    • Keep up-to-date with Europe’s largest audited environmental monitoring magazine

 

    • Delivering the latest information on new products and emerging technologies related to industrial environmental monitoring.

 

This field is for validation purposes and should be left unchanged.

Subscribe

SUBSCRIBE TO AWE MAGAZINE

5 reasons to subscribe to our digital and print package

  • Stay up to date from anywhere in the world, with instant access to the latest issue straight from your phone, tablet or laptop.
  • Trust that you’re getting the best content from our range of internationally accredited authors.
  • Get full access to our archives and see how the environmental monitoring landscape has evolved with us over the years.
  • Enjoy our monthly newsletter curated with up-to-the-minute news and a selection of editor’s top picks.
  • Hot off the press and straight to your door – look forward to your own glossy copy of AWE, delivered five times a year
Subscribe View Subscription levels

STAY SAFE & INFORMED

Subscribe to the latest environmental monitoring articles, news, products and regulations

Find out more

Stay up to date with our newsletter

  • This field is for validation purposes and should be left unchanged.

ABOUT

  • About AWE
  • Advertise
  • Contact Us

YOUR ACCOUNT

Sign In Register Account Subscribe to AWE

RESOURCES

Request Media Pack

CONNECT

ACCREDITATIONS

Copyright Bay Publishing 2023. All Rights reserved.

Designed & Built by:
  • Terms & Conditions
  • Privacy Policy
  • Cookie Policy
We use cookies on our website to give you the most relevant experience by remembering your preferences and repeat visits. By clicking “Accept”, you consent to the use of ALL the cookies.
Cookie settingsACCEPT
Manage consent

Privacy Overview

This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary
Always Enabled
Necessary cookies are absolutely essential for the website to function properly. These cookies ensure basic functionalities and security features of the website, anonymously.
CookieDurationDescription
cookielawinfo-checbox-analytics11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Analytics".
cookielawinfo-checbox-functional11 monthsThe cookie is set by GDPR cookie consent to record the user consent for the cookies in the category "Functional".
cookielawinfo-checbox-others11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Other.
cookielawinfo-checkbox-necessary11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookies is used to store the user consent for the cookies in the category "Necessary".
cookielawinfo-checkbox-performance11 monthsThis cookie is set by GDPR Cookie Consent plugin. The cookie is used to store the user consent for the cookies in the category "Performance".
viewed_cookie_policy11 monthsThe cookie is set by the GDPR Cookie Consent plugin and is used to store whether or not user has consented to the use of cookies. It does not store any personal data.
Functional
Functional cookies help to perform certain functionalities like sharing the content of the website on social media platforms, collect feedbacks, and other third-party features.
Performance
Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.
Analytics
Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics the number of visitors, bounce rate, traffic source, etc.
Advertisement
Advertisement cookies are used to provide visitors with relevant ads and marketing campaigns. These cookies track visitors across websites and collect information to provide customized ads.
Others
Other uncategorized cookies are those that are being analyzed and have not been classified into a category as yet.
SAVE & ACCEPT